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Introduction

Notations

We will use the following notations:

• p : X → D proper, smooth Kähler family, Xt := p−1(t).

• KX/D is the relative canonical bundle of X

• E =
∑

Ei divisor on X such that E + Xt snc for all t ∈ D. Can choose
(z1, . . . , zn, zn+1 = 1) coordinates on Ω such that E ∩Ω = (z1...zk = 0) and p(z) = t.

• (L, hL)→ X line bundle, hL = e−ϕL such that modulo C∞

ϕL '
k∑
i=1

ai log |zi|2 −
∑

I⊂{1,...k}

bi log
(
φI − log

∏
i∈I

|zi|2
)

ai, bI > 0.

• I(hL) is the multiplier ideal sheaf of hL.

• F := p?
(
(KX/D + L)⊗ I(hL)

)
. Note that we have

Ft = H0(Xt, (KXt + L)⊗ I(hL|Xt )
)
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Introduction

The main results, I

• Let u, v ∈ C∞(D,F). Define hF (u, v)t := cn

∫
Xt

u ∧ ve−ϕL

• Let u ∈ C∞(D,F). A representative for u is a (n, 0) form u on X with values in L
such that

u|Xt = ut,
∂̄u
dt̄

∣∣∣
Xt

∈ L2

• Let DF = D′F + ∂̄ be the induced Chern connection.

Theorem 1 [CGP]
Let p : X → D and (L, hL)→ X as above (with bI = 0) and let u ∈ H0(D,F). We
assume that √

−1Θ(L, hL) ≥ 0, D′Fu = 0.

Then there exists a continuous L2 representative u of u defined on p : X ? \ E → D?
such that

∂̄u
dt

∣∣∣
Xt\E

= 0, D′u = 0, ΘhL (L) ∧ u = 0.

on X ? \ E, t ∈ D?.
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Introduction

The main results, II

• We will also discuss the following.

Theorem 2 [CGP]
Let p : X → D be a smooth projective fibration and let (L, hL)→ X be a line bundle
as above, together with

1.
√
−1ΘhL (L) ≥ 0

2. For any t ∈ D, the absolutely continuous part ωL :=
√
−1ΘhL (L)ac satisfies∫

Xt
ωnL > 0.

Then there exists D? ⊂ D such that ∀t ∈ D? and for any u ∈ H0(D,F)

〈
√
−1ΘhF (F)u, u〉t ≥ cn

∫
Xt

c(ωL)u ∧ ue−φL

• c(ωL) :=
ωn+1
L

ωnL ∧ idt ∧ dt
the geodesic curvature associated to ωL (defined by

approximation in the degenerate case).
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Introduction

Motivation

• The following important problem is (still...) open.

Conjecture [Iitaka]
Let (X,B) be a projective manifold together with an effective Q-divisor B such that
I(B) = OX . Then

κ(X,B) ≥ κ(Xt, Bt) + κ(Y )

κ = Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

I In all the known particular cases the sheaf Fm := p?
(
m(KX/Y +B)

)
plays a

crucial role
I One can construct a natural, positively curved metric hm on Fm.
I Consider Lm := det(Fm); conjecture known if Lm big or c1(Lm) = 0.
I Theorem 1: attempt to understand better the intermediate case.

• We discuss next the main ingredients in the proof.
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Proof of Theorem 1

The non-singular case: Berndtsson’s approach

• In his work concerning the positivity properties of (F , hF ), Berndtsson is using
the following technique.

I Let ω be a Kähler metric on X . Consider u ∈ H0(D,F) and u = any
representative of u.

I In case of a non-singular metric hL we have the following formula

∂∂̄‖u‖2hF = cn

[
− p?(ΘhL (L) ∧ u ∧ ūe−ϕL ) + (−1)np?(D′u ∧D′ue−ϕL )

+ (−1)np?(∂̄u ∧ ∂̄u e−ϕL )
]

• The non-singular version Theorem 1 follows:
I We have u such that D′Fu = 0.
I Hodge theory shows that ∃u such that

∂̄u = dt ∧ η, D′u = dt ∧ µ

on each Xt, where η ∧ ω|Xt = 0 and µ|Xt = 0. This is achieved by solving a
fiber-wise ∂̄? equation.

I The LHS of formula is zero; Theorem 1 follows by using the representative u
above.
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− p?(ΘhL (L) ∧ u ∧ ūe−ϕL ) + (−1)np?(D′u ∧D′ue−ϕL )

+ (−1)np?(∂̄u ∧ ∂̄u e−ϕL )
]

• The non-singular version Theorem 1 follows:
I We have u such that D′Fu = 0.

I Hodge theory shows that ∃u such that
∂̄u = dt ∧ η, D′u = dt ∧ µ

on each Xt, where η ∧ ω|Xt = 0 and µ|Xt = 0. This is achieved by solving a
fiber-wise ∂̄? equation.

I The LHS of formula is zero; Theorem 1 follows by using the representative u
above.

Page 7 of 16



Proof of Theorem 1

The non-singular case: Berndtsson’s approach

• In his work concerning the positivity properties of (F , hF ), Berndtsson is using
the following technique.
I Let ω be a Kähler metric on X . Consider u ∈ H0(D,F) and u = any

representative of u.
I In case of a non-singular metric hL we have the following formula

∂∂̄‖u‖2hF = cn

[
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Proof of Theorem 1

The general case: construction of representatives

• Back to the general setting (i.e. hL as in a few clicks above)

• We use a metric on X with Poincaré singularities along E

ωE := ω +
√
−1∂∂̄

[
−

N∑
i=1

log log 1
|si|2

]
• Consider local co-ordinates (z1, . . . , zn, zn+1 = t) such that p(z) = t

ωE |Ω = gtt̄ idt ∧ dt̄+
∑
α

gαt̄ idzα ∧ dt̄+
∑
α

gtᾱ idt ∧ dz̄α +
∑
α,β

gαβ̄ idzα ∧ dz̄β

• The horizontal lifting of ∂

∂t
given by

V := ∂

∂t
−
∑
α,β

gβ̄αgtβ̄
∂

∂zα

• Let u be a section of F . We define

u := V c(dt ∧ U0)

where U0 is an arbitrary representative of u.
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gtᾱ idt ∧ dz̄α +
∑
α,β

gαβ̄ idzα ∧ dz̄β

• The horizontal lifting of ∂

∂t
given by

V := ∂

∂t
−
∑
α,β

gβ̄αgtβ̄
∂

∂zα

• Let u be a section of F . We define

u := V c(dt ∧ U0)

where U0 is an arbitrary representative of u.

Page 8 of 16



Proof of Theorem 1

The general case: construction of representatives

• Back to the general setting (i.e. hL as in a few clicks above)
• We use a metric on X with Poincaré singularities along E

ωE := ω +
√
−1∂∂̄

[
−

N∑
i=1

log log 1
|si|2

]

• Consider local co-ordinates (z1, . . . , zn, zn+1 = t) such that p(z) = t

ωE |Ω = gtt̄ idt ∧ dt̄+
∑
α

gαt̄ idzα ∧ dt̄+
∑
α
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Proof of Theorem 1

Properties of u and a general curvature formula

• We define ∂̄u = dt ∧ η and D′u = dt ∧ µ.

I The forms η|Xt , µ|Xt and µ|Xt are L2.
I The forms u, η, µ and ∂̄µ are also in L2(X )
I We also have u ∧ ωE |Ω = a(z, t)gtt̄ dt ∧ dt̄ ∧ dz1 ∧ . . . ∧ dzn. Thus

u ∧ ωE
dt

∣∣∣
Xt

= 0.

I It follows that η ∧ ωE |Xt = 0.

Proposition
Let u be a continuous representative of u as above. Then

∂∂̄‖u‖2hF = cn

[
− p?(ΘhL (L)ac ∧ u ∧ ūe−φL ) + (−1)np?(D′u ∧D′ue−φL )

+ (−1)np?(∂̄u ∧ ∂̄u e−φL )
]

Here ΘhL (L)ac is the absolutely continuous part of the current ΘhL (L).
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− p?(ΘhL (L)ac ∧ u ∧ ūe−φL ) + (−1)np?(D′u ∧D′ue−φL )

+ (−1)np?(∂̄u ∧ ∂̄u e−φL )
]

Here ΘhL (L)ac is the absolutely continuous part of the current ΘhL (L).

Page 9 of 16



Proof of Theorem 1

Properties of u and a general curvature formula

• We define ∂̄u = dt ∧ η and D′u = dt ∧ µ.

I The forms η|Xt , µ|Xt and µ|Xt are L2.
I The forms u, η, µ and ∂̄µ are also in L2(X )
I We also have u ∧ ωE |Ω = a(z, t)gtt̄ dt ∧ dt̄ ∧ dz1 ∧ . . . ∧ dzn. Thus

u ∧ ωE
dt

∣∣∣
Xt

= 0.

I It follows that η ∧ ωE |Xt = 0.

Proposition
Let u be a continuous representative of u as above. Then

∂∂̄‖u‖2hF = cn

[
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Proof of Theorem 1

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in
the following setting. Let X be a compact Kähler manifold and let
E = E1 + · · ·+ Ek be a snc divisor.

• We consider ωE a metric with Poincaré-type singularities along E and (L, hL) as
above.

Theorem 3 [CP]
We have the following equality for (X,ωE) and (L, hL).

L2
n,1(X0, L) = Hn,1(X0, L)⊕ Im∂ ⊕ Im∂?

where X0 := X \ Y .

• This can be seen as part of L2-Hodge theory (cf. work by A. Fujiki, S. Zucker,
Pardon-Stein and more recently H. Auvray, P. Naumann...).

• The proof based on the fact that (X0, ωE) complete, together with the following
a-priori estimate.
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Proof of Theorem 1

Hodge decomposition, II

• Let A := [
√
−1ΘhL (L),ΛωE ] be the usual curvature operator. We consider

H(p) := {v ∈ H0(X◦,ΩpX◦ ⊗ L) ∩ L2;
∫
X◦
〈A ? v, ?v〉dVωE = 0}.

• The following is an important ingredient in establishing the Hodge decomposition.

Theorem 4 (Poincaré inequality)
Let p ≤ n be a positive integer. There exists a positive constant C > 0 such that∫

X0

|u|2ωE
e−ϕLdV ≤ C

(∫
X0

|∂u|2ωE
e−ϕLdVωE +

∫
X0

〈A ? u, ?u〉dVωE

)
for any L-valued form u of type (p, 0) which belongs to the domain of ∂̄ and which is
orthogonal to the space H(p).

• Application: same results hold for metrics with conic singularities along Y

ωC |Ω =
r∑
i=1

√
−1dzi ∧ dzi

|zi|
2 mi−1

mi

+
n∑

i=r+1

√
−1dzi ∧ dzi.
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Proof of Theorem 1

End of the proof of Theorem 1

• We actually need the relative version of the Poincaré inequality.

Theorem 5
We assume that D 3 t 7→ dim

(
ker(∆′′t )

)
is constant. Then there exists C > 0:∫

Xt

|u|2ωE
e−ϕLdVωE ≤ C

(∫
Xt

|∂̄u|2ωE
e−φdVωE +

∫
Xt

〈A ? u, ?u〉dVωE

)
for all L2 forms u orthogonal to the space H(p)

t defined on the fiber Xt.

• Theorem 1 is proved as follows:

I Consider the representative u of u given by contraction with the canonical
lifting of ∂

∂t

I Since D′Fu = 0, it follows that if D′u = dt ∧ µ then µ|Xt is ∂̄?-exact.
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Proof of Theorem 1

End of the proof of Theorem 1

I By Theorem 3 we can solve the fiberwise equation ∂̄?βt = µ|Xt . Moreover, can
assume that βt orthogonal to Ker(∂̄?).

I The family (βt)t∈D is varying continuously with respect to t.

I We set u1 := u− dt ∧ ?tβt: it is the representative we are looking for.

A remark
The continuity of (βt)t∈D is reasonably involved, based on Theorem 5 combined with
standard arguments. Actually the statement should be that (βt)t∈D is a smooth
family.

• In what follows we discuss the proof of Theorem 2.
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Proof of Theorem 2

A version of Theorem 2

• We consider the following setting:

I The curvature current of (L, hL) can be written as
√
−1Θ(L, hL) = ωL + [F ]

I F effective, its support is snc and transverse to fibers

I The smooth form ωL ≥ 0 on X and fiber-wise Kähler.

• We have the following result.

Theorem 2’
Consider p : X → D and (L, hL)→ X as above. For every u ∈ H0(D,F) and any
t ∈ D

〈
√
−1ΘhF (F)u, u〉t ≥ cn

∫
Xt

c(ωL)u ∧ ūe−ϕL .
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Proof of Theorem 2

Approximation

• We proceed by approximation

ωL,ε := ωL + δε
√
−1dt ∧ dt̄−

√
−1ε

∑
i

∂∂̄ log log 1
|si|2

• A few properties:

I There exists C > 0 such that c(ωL,ε) ≤ C and lim
ε→0

c(ωL,ε) = c(ωL).

I Let hL,ε be the metric on L whose curvature in the complement of F is ωL,ε.
Then I(hL,ε) = I(hL).

• Let uε be the representative of u given by Vεc(dt ∧ U0).

• We introduce: ∂̄uε = dt ∧ ηε and D′uε = dt ∧ µε.
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Proof of Theorem 2

End of the proof

• Our current context: (X,ωL,ε) and (L, hL,ε)

I The curvature formula looks better:

− ∂2

∂t∂t̄
(‖u‖2hF,ε

) = cn

∫
Xt

c(ωε)uε∧ūεe−ϕε +
∫
Xt

|ηε|2e−ϕεdVωε−
∫
Xt

|µε|2e−ϕεdVωε ,

I The LHS is equal to

〈
√
−1ΘhF,ε (F)u, u〉 − ‖P (µε)‖2

I We have ∂̄µε = D′ηε which combined with L2 estimates:∫
Xt

|µ⊥ε |2ωε
e−ϕεdVωε ≤

∫
Xt

|ηε|2ωε
e−ϕεdVωε

I The decomposition µε = P (µε) + µ⊥ε is orthogonal and we are done.
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