Curvature of direct image of singular twisted relative canonical bundles

(joint with J. Cao and H. Guenancia)

Amazing Conference
June $2^{\text {nd }}, 2021$

Mihai Paun
Universität Bayreuth, Germany

\author{

1. Introduction
}
2. Proof of Theorem 1
3. Proof of Theorem 2

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E=\sum E_{i}$ divisor on \mathcal{X} such that $E+\mathcal{X}_{t}$ snc for all $t \in \mathbb{D}$. Can choose $\left(z_{1}, \ldots, z_{n}, z_{n+1}=1\right)$ coordinates on Ω such that $E \cap \Omega=\left(z_{1} \ldots z_{k}=0\right)$ and $p(z)=t$.

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E=\sum E_{i}$ divisor on \mathcal{X} such that $E+\mathcal{X}_{t}$ snc for all $t \in \mathbb{D}$. Can choose $\left(z_{1}, \ldots, z_{n}, z_{n+1}=1\right)$ coordinates on Ω such that $E \cap \Omega=\left(z_{1} \ldots z_{k}=0\right)$ and $p(z)=t$.
- $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ line bundle, $h_{L}=e^{-\varphi_{L}}$ such that modulo \mathcal{C}^{∞}

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E=\sum E_{i}$ divisor on \mathcal{X} such that $E+\mathcal{X}_{t}$ snc for all $t \in \mathbb{D}$. Can choose $\left(z_{1}, \ldots, z_{n}, z_{n+1}=1\right)$ coordinates on Ω such that $E \cap \Omega=\left(z_{1} \ldots z_{k}=0\right)$ and $p(z)=t$.
- $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ line bundle, $h_{L}=e^{-\varphi_{L}}$ such that modulo \mathcal{C}^{∞}

$$
\varphi_{L} \simeq \sum_{i=1}^{k} a_{i} \log \left|z_{i}\right|^{2}-\sum_{I \subset\{1, \ldots k\}} b_{i} \log \left(\phi_{I}-\log \prod_{i \in I}\left|z_{i}\right|^{2}\right) \quad a_{i}, b_{I}>0
$$

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E=\sum E_{i}$ divisor on \mathcal{X} such that $E+\mathcal{X}_{t}$ snc for all $t \in \mathbb{D}$. Can choose $\left(z_{1}, \ldots, z_{n}, z_{n+1}=1\right)$ coordinates on Ω such that $E \cap \Omega=\left(z_{1} \ldots z_{k}=0\right)$ and $p(z)=t$.
- $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ line bundle, $h_{L}=e^{-\varphi_{L}}$ such that modulo \mathcal{C}^{∞}

$$
\varphi_{L} \simeq \sum_{i=1}^{k} a_{i} \log \left|z_{i}\right|^{2}-\sum_{I \subset\{1, \ldots k\}} b_{i} \log \left(\phi_{I}-\log \prod_{i \in I}\left|z_{i}\right|^{2}\right) \quad a_{i}, b_{I}>0
$$

- $\mathcal{I}\left(h_{L}\right)$ is the multiplier ideal sheaf of h_{L}.

Notations

We will use the following notations:

- $p: \mathcal{X} \rightarrow \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_{t}:=p^{-1}(t)$.
- $K_{\mathcal{X} / \mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E=\sum E_{i}$ divisor on \mathcal{X} such that $E+\mathcal{X}_{t}$ snc for all $t \in \mathbb{D}$. Can choose $\left(z_{1}, \ldots, z_{n}, z_{n+1}=1\right)$ coordinates on Ω such that $E \cap \Omega=\left(z_{1} \ldots z_{k}=0\right)$ and $p(z)=t$.
- $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ line bundle, $h_{L}=e^{-\varphi_{L}}$ such that modulo \mathcal{C}^{∞}

$$
\varphi_{L} \simeq \sum_{i=1}^{k} a_{i} \log \left|z_{i}\right|^{2}-\sum_{I \subset\{1, \ldots k\}} b_{i} \log \left(\phi_{I}-\log \prod_{i \in I}\left|z_{i}\right|^{2}\right) \quad a_{i}, b_{I}>0
$$

- $\mathcal{I}\left(h_{L}\right)$ is the multiplier ideal sheaf of h_{L}.
- $\mathcal{F}:=p_{\star}\left(\left(K_{\mathcal{X} / \mathbb{D}}+L\right) \otimes \mathcal{I}\left(h_{L}\right)\right)$. Note that we have

$$
\mathcal{F}_{t}=H^{0}\left(\mathcal{X}_{t},\left(K_{\mathcal{X}_{t}}+L\right) \otimes \mathcal{I}\left(\left.h_{L}\right|_{\mathcal{X}_{t}}\right)\right)
$$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a $(n, 0)$ form \mathbf{u} on \mathcal{X} with values in L such that

$$
\left.\mathbf{u}\right|_{\mathcal{X}_{t}}=u_{t},\left.\quad \frac{\bar{\partial} \mathbf{u}}{d \bar{t}}\right|_{\mathcal{X}_{t}} \in L^{2}
$$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a $(n, 0)$ form \mathbf{u} on \mathcal{X} with values in L such that

$$
\left.\mathbf{u}\right|_{\mathcal{X}_{t}}=u_{t},\left.\quad \frac{\bar{\partial} \mathbf{u}}{d \bar{t}}\right|_{\mathcal{X}_{t}} \in L^{2}
$$

- Let $D_{\mathcal{F}}=D_{\mathcal{F}}^{\prime}+\bar{\partial}$ be the induced Chern connection.

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a $(n, 0)$ form \mathbf{u} on \mathcal{X} with values in L such that

$$
\left.\mathbf{u}\right|_{\mathcal{X}_{t}}=u_{t},\left.\quad \frac{\bar{\partial} \mathbf{u}}{d \bar{t}}\right|_{\mathcal{X}_{t}} \in L^{2}
$$

- Let $D_{\mathcal{F}}=D_{\mathcal{F}}^{\prime}+\bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ and $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ as above (with $\left.b_{I}=0\right)$ and let $u \in H^{0}(\mathbb{D}, \mathcal{F})$. We assume that

$$
\sqrt{-1} \Theta\left(L, h_{L}\right) \geq 0, \quad D_{\mathcal{F}}^{\prime} u=0
$$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a $(n, 0)$ form \mathbf{u} on \mathcal{X} with values in L such that

$$
\left.\mathbf{u}\right|_{\mathcal{X}_{t}}=u_{t},\left.\quad \frac{\bar{\partial} \mathbf{u}}{d \bar{t}}\right|_{\mathcal{X}_{t}} \in L^{2}
$$

- Let $D_{\mathcal{F}}=D_{\mathcal{F}}^{\prime}+\bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ and $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ as above (with $\left.b_{I}=0\right)$ and let $u \in H^{0}(\mathbb{D}, \mathcal{F})$. We assume that

$$
\sqrt{-1} \Theta\left(L, h_{L}\right) \geq 0, \quad D_{\mathcal{F}}^{\prime} u=0
$$

Then there exists a continuous L^{2} representative \mathbf{u} of u defined on $p: \mathcal{X}^{\star} \backslash E \rightarrow \mathbb{D}^{\star}$ such that

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_{t}:=c_{n} \int_{\mathcal{X}_{t}} u \wedge \bar{v} e^{-\varphi_{L}}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a $(n, 0)$ form \mathbf{u} on \mathcal{X} with values in L such that

$$
\left.\mathbf{u}\right|_{\mathcal{X}_{t}}=u_{t},\left.\quad \frac{\bar{\partial} \mathbf{u}}{d \bar{t}}\right|_{\mathcal{X}_{t}} \in L^{2}
$$

- Let $D_{\mathcal{F}}=D_{\mathcal{F}}^{\prime}+\bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ and $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ as above (with $\left.b_{I}=0\right)$ and let $u \in H^{0}(\mathbb{D}, \mathcal{F})$. We assume that

$$
\sqrt{-1} \Theta\left(L, h_{L}\right) \geq 0, \quad D_{\mathcal{F}}^{\prime} u=0
$$

Then there exists a continuous L^{2} representative \mathbf{u} of u defined on $p: \mathcal{X}^{\star} \backslash E \rightarrow \mathbb{D}^{\star}$ such that

$$
\left.\frac{\bar{\partial} \mathbf{u}}{d t}\right|_{X_{t} \backslash E}=0, \quad D^{\prime} \mathbf{u}=0, \quad \Theta_{h_{L}}(L) \wedge \mathbf{u}=0
$$

on $\mathcal{X}^{\star} \backslash E, t \in D^{\star}$.

The main results, II

- We will also discuss the following.

The main results, II

- We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ be a smooth projective fibration and let $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ be a line bundle as above, together with

The main results, II

- We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ be a smooth projective fibration and let $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ be a line bundle as above, together with

1. $\sqrt{-1} \Theta_{h_{L}}(L) \geq 0$

The main results, II

- We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ be a smooth projective fibration and let $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ be a line bundle as above, together with

1. $\sqrt{-1} \Theta_{h_{L}}(L) \geq 0$
2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_{L}:=\sqrt{-1} \Theta_{h_{L}}(L)_{\text {ac }}$ satisfies $\int_{X_{t}} \omega_{L}^{n}>0$.

The main results, II

- We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ be a smooth projective fibration and let $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ be a line bundle as above, together with

1. $\sqrt{-1} \Theta_{h_{L}}(L) \geq 0$
2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_{L}:=\sqrt{-1} \Theta_{h_{L}}(L)$ ac satisfies $\int_{X_{t}} \omega_{L}^{n}>0$.
Then there exists $D^{\star} \subset D$ such that $\forall t \in \mathbb{D}^{\star}$ and for any $u \in H^{0}(\mathbb{D}, \mathcal{F})$

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}}}(\mathcal{F}) u, u\right\rangle_{t} \geq c_{n} \int_{X_{t}} c\left(\omega_{L}\right) u \wedge \bar{u} e^{-\phi_{L}}
$$

The main results, II

- We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \rightarrow \mathbb{D}$ be a smooth projective fibration and let $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ be a line bundle as above, together with

1. $\sqrt{-1} \Theta_{h_{L}}(L) \geq 0$
2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_{L}:=\sqrt{-1} \Theta_{h_{L}}(L)$ ac satisfies $\int_{X_{t}} \omega_{L}^{n}>0$.
Then there exists $D^{\star} \subset D$ such that $\forall t \in \mathbb{D}^{\star}$ and for any $u \in H^{0}(\mathbb{D}, \mathcal{F})$

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}}}(\mathcal{F}) u, u\right\rangle_{t} \geq c_{n} \int_{X_{t}} c\left(\omega_{L}\right) u \wedge \bar{u} e^{-\phi_{L}}
$$

- $c\left(\omega_{L}\right):=\frac{\omega_{L}^{n+1}}{\omega_{L}^{n} \wedge i d t \wedge d \bar{t}}$ the geodesic curvature associated to ω_{L} (defined by approximation in the degenerate case).

Motivation

- The following important problem is (still...) open.

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

- In all the known particular cases the sheaf $\mathcal{F}_{m}:=p_{\star}\left(m\left(K_{X / Y}+B\right)\right)$ plays a crucial role

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

- In all the known particular cases the sheaf $\mathcal{F}_{m}:=p_{\star}\left(m\left(K_{X / Y}+B\right)\right)$ plays a crucial role
- One can construct a natural, positively curved metric h_{m} on \mathcal{F}_{m}.

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

- In all the known particular cases the sheaf $\mathcal{F}_{m}:=p_{\star}\left(m\left(K_{X / Y}+B\right)\right)$ plays a crucial role
- One can construct a natural, positively curved metric h_{m} on \mathcal{F}_{m}.
- Consider $\mathcal{L}_{m}:=\operatorname{det}\left(\mathcal{F}_{m}\right)$; conjecture known if \mathcal{L}_{m} big or $c_{1}\left(\mathcal{L}_{m}\right)=0$.

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

- In all the known particular cases the sheaf $\mathcal{F}_{m}:=p_{\star}\left(m\left(K_{X / Y}+B\right)\right)$ plays a crucial role
- One can construct a natural, positively curved metric h_{m} on \mathcal{F}_{m}.
- Consider $\mathcal{L}_{m}:=\operatorname{det}\left(\mathcal{F}_{m}\right)$; conjecture known if \mathcal{L}_{m} big or $c_{1}\left(\mathcal{L}_{m}\right)=0$.
- Theorem 1: attempt to understand better the intermediate case.

Motivation

- The following important problem is (still...) open.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q}-divisor B such that $\mathcal{I}(B)=\mathcal{O}_{X}$. Then

$$
\kappa(X, B) \geq \kappa\left(X_{t}, B_{t}\right)+\kappa(Y)
$$

$\kappa=$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

- In all the known particular cases the sheaf $\mathcal{F}_{m}:=p_{\star}\left(m\left(K_{X / Y}+B\right)\right)$ plays a crucial role
- One can construct a natural, positively curved metric h_{m} on \mathcal{F}_{m}.
- Consider $\mathcal{L}_{m}:=\operatorname{det}\left(\mathcal{F}_{m}\right)$; conjecture known if \mathcal{L}_{m} big or $c_{1}\left(\mathcal{L}_{m}\right)=0$.
- Theorem 1: attempt to understand better the intermediate case.
- We discuss next the main ingredients in the proof.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

- The non-singular version Theorem 1 follows:
- We have u such that $D_{\mathcal{F}}^{\prime} u=0$.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

- The non-singular version Theorem 1 follows:
- We have u such that $D_{\mathcal{F}}^{\prime} u=0$.
- Hodge theory shows that $\exists \mathbf{u}$ such that

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

- The non-singular version Theorem 1 follows:
- We have u such that $D_{\mathcal{F}}^{\prime} u=0$.
- Hodge theory shows that $\exists \mathbf{u}$ such that

$$
\bar{\partial} \mathbf{u}=d t \wedge \eta, \quad D^{\prime} \mathbf{u}=d t \wedge \mu
$$

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

- The non-singular version Theorem 1 follows:
- We have u such that $D_{\mathcal{F}}^{\prime} u=0$.
- Hodge theory shows that $\exists \mathbf{u}$ such that

$$
\bar{\partial} \mathbf{u}=d t \wedge \eta, \quad D^{\prime} \mathbf{u}=d t \wedge \mu
$$

on each \mathcal{X}_{t}, where $\left.\eta \wedge \omega\right|_{\mathcal{X}_{t}}=0$ and $\left.\mu\right|_{\mathcal{X}_{t}}=0$. This is achieved by solving a fiber-wise $\bar{\partial}^{\star}$ equation.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $\left(\mathcal{F}, h_{\mathcal{F}}\right)$, Berndtsson is using the following technique.
- Let ω be a Kähler metric on \mathcal{X}. Consider $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and $\mathbf{u}=$ any representative of u.
- In case of a non-singular metric h_{L} we have the following formula

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\varphi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\varphi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \bar{\partial} \mathbf{u} e^{-\varphi_{L}}\right)\right]
\end{aligned}
$$

- The non-singular version Theorem 1 follows:
- We have u such that $D_{\mathcal{F}}^{\prime} u=0$.
- Hodge theory shows that $\exists \mathbf{u}$ such that

$$
\bar{\partial} \mathbf{u}=d t \wedge \eta, \quad D^{\prime} \mathbf{u}=d t \wedge \mu
$$

on each \mathcal{X}_{t}, where $\left.\eta \wedge \omega\right|_{\mathcal{X}_{t}}=0$ and $\left.\mu\right|_{\mathcal{X}_{t}}=0$. This is achieved by solving a fiber-wise $\bar{\partial}^{\star}$ equation.

- The LHS of formula is zero; Theorem 1 follows by using the representative \mathbf{u} above.

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)
- We use a metric on \mathcal{X} with Poincaré singularities along E

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)
- We use a metric on \mathcal{X} with Poincaré singularities along E

$$
\omega_{E}:=\omega+\sqrt{-1} \partial \bar{\partial}\left[-\sum_{i=1}^{N} \log \log \frac{1}{\left|s_{i}\right|^{2}}\right]
$$

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)
- We use a metric on \mathcal{X} with Poincaré singularities along E

$$
\omega_{E}:=\omega+\sqrt{-1} \partial \bar{\partial}\left[-\sum_{i=1}^{N} \log \log \frac{1}{\left|s_{i}\right|^{2}}\right]
$$

- Consider local co-ordinates $\left(z_{1}, \ldots, z_{n}, z_{n+1}=t\right)$ such that $p(z)=t$

$$
\left.\omega_{E}\right|_{\Omega}=g_{t \bar{t}} i d t \wedge d \bar{t}+\sum_{\alpha} g_{\alpha \bar{t}} i d z_{\alpha} \wedge d \bar{t}+\sum_{\alpha} g_{t \bar{\alpha}} i d t \wedge d \bar{z}_{\alpha}+\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} i d z_{\alpha} \wedge d \bar{z}_{\beta}
$$

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)
- We use a metric on \mathcal{X} with Poincaré singularities along E

$$
\omega_{E}:=\omega+\sqrt{-1} \partial \bar{\partial}\left[-\sum_{i=1}^{N} \log \log \frac{1}{\left|s_{i}\right|^{2}}\right]
$$

- Consider local co-ordinates $\left(z_{1}, \ldots, z_{n}, z_{n+1}=t\right)$ such that $p(z)=t$

$$
\left.\omega_{E}\right|_{\Omega}=g_{t \bar{t}} i d t \wedge d \bar{t}+\sum_{\alpha} g_{\alpha \bar{t}} i d z_{\alpha} \wedge d \bar{t}+\sum_{\alpha} g_{t \bar{\alpha}} i d t \wedge d \bar{z}_{\alpha}+\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} i d z_{\alpha} \wedge d \bar{z}_{\beta}
$$

- The horizontal lifting of $\frac{\partial}{\partial t}$ given by

$$
V:=\frac{\partial}{\partial t}-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha} g_{t \bar{\beta}} \frac{\partial}{\partial z_{\alpha}}
$$

The general case: construction of representatives

- Back to the general setting (i.e. h_{L} as in a few clicks above)
- We use a metric on \mathcal{X} with Poincaré singularities along E

$$
\omega_{E}:=\omega+\sqrt{-1} \partial \bar{\partial}\left[-\sum_{i=1}^{N} \log \log \frac{1}{\left|s_{i}\right|^{2}}\right]
$$

- Consider local co-ordinates $\left(z_{1}, \ldots, z_{n}, z_{n+1}=t\right)$ such that $p(z)=t$

$$
\left.\omega_{E}\right|_{\Omega}=g_{t \bar{t}} i d t \wedge d \bar{t}+\sum_{\alpha} g_{\alpha \bar{t}} i d z_{\alpha} \wedge d \bar{t}+\sum_{\alpha} g_{t \bar{\alpha}} i d t \wedge d \bar{z}_{\alpha}+\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} i d z_{\alpha} \wedge d \bar{z}_{\beta}
$$

- The horizontal lifting of $\frac{\partial}{\partial t}$ given by

$$
V:=\frac{\partial}{\partial t}-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha} g_{t \bar{\beta}} \frac{\partial}{\partial z_{\alpha}}
$$

- Let u be a section of \mathcal{F}. We define

$$
\mathbf{u}:=V\rfloor\left(d t \wedge U_{0}\right)
$$

where U_{0} is an arbitrary representative of u.

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\left.\eta\right|_{\mathcal{X}_{t}},\left.\mu\right|_{\mathcal{X}_{t}}$ and $\mu \mid \mathcal{X}_{t}$ are L^{2}.

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\left.\eta\right|_{\mathcal{X}_{t}},\left.\mu\right|_{\mathcal{X}_{t}}$ and $\left.\mu\right|_{\mathcal{X}_{t}}$ are L^{2}.
- The forms \mathbf{u}, η, μ and $\bar{\partial} \mu$ are also in $L^{2}(\mathcal{X})$

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\eta\left|\mathcal{X}_{t}, \mu\right|_{\mathcal{X}_{t}}$ and $\mu \mid \mathcal{X}_{t}$ are L^{2}.
- The forms \mathbf{u}, η, μ and $\bar{\partial} \mu$ are also in $L^{2}(\mathcal{X})$
- We also have $\left.\mathbf{u} \wedge \omega_{E}\right|_{\Omega}=a(z, t) g_{t \bar{t}} d t \wedge d \bar{t} \wedge d z_{1} \wedge \ldots \wedge d z_{n}$. Thus

$$
\left.\frac{\mathbf{u} \wedge \omega_{E}}{d t}\right|_{\mathcal{X}_{t}}=0
$$

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\left.\eta\right|_{\mathcal{X}_{t}},\left.\mu\right|_{\mathcal{X}_{t}}$ and $\left.\mu\right|_{\mathcal{X}_{t}}$ are L^{2}.
- The forms \mathbf{u}, η, μ and $\bar{\partial} \mu$ are also in $L^{2}(\mathcal{X})$
\triangleright We also have $\left.\mathbf{u} \wedge \omega_{E}\right|_{\Omega}=a(z, t) g_{t \bar{t}} d t \wedge d \bar{t} \wedge d z_{1} \wedge \ldots \wedge d z_{n}$. Thus

$$
\left.\frac{\mathbf{u} \wedge \omega_{E}}{d t}\right|_{\mathcal{X}_{t}}=0
$$

- It follows that $\left.\eta \wedge \omega_{E}\right|_{\mathcal{X}_{t}}=0$.

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\left.\eta\right|_{\mathcal{X}_{t}},\left.\mu\right|_{\mathcal{X}_{t}}$ and $\left.\mu\right|_{\mathcal{X}_{t}}$ are L^{2}.
- The forms \mathbf{u}, η, μ and $\bar{\partial} \mu$ are also in $L^{2}(\mathcal{X})$
\triangleright We also have $\left.\mathbf{u} \wedge \omega_{E}\right|_{\Omega}=a(z, t) g_{t \bar{t}} d t \wedge d \bar{t} \wedge d z_{1} \wedge \ldots \wedge d z_{n}$. Thus

$$
\left.\frac{\mathbf{u} \wedge \omega_{E}}{d t}\right|_{\mathcal{X}_{t}}=0
$$

- It follows that $\eta \wedge \omega_{E} \mid \mathcal{X}_{t}=0$.

Proposition

Let \mathbf{u} be a continuous representative of u as above. Then

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u}=d t \wedge \eta$ and $D^{\prime} \mathbf{u}=d t \wedge \mu$.
- The forms $\left.\eta\right|_{\mathcal{X}_{t}},\left.\mu\right|_{\mathcal{X}_{t}}$ and $\left.\mu\right|_{\mathcal{X}_{t}}$ are L^{2}.
- The forms \mathbf{u}, η, μ and $\bar{\partial} \mu$ are also in $L^{2}(\mathcal{X})$
\triangleright We also have $\left.\mathbf{u} \wedge \omega_{E}\right|_{\Omega}=a(z, t) g_{t \bar{t}} d t \wedge d \bar{t} \wedge d z_{1} \wedge \ldots \wedge d z_{n}$. Thus

$$
\left.\frac{\mathbf{u} \wedge \omega_{E}}{d t}\right|_{\mathcal{X}_{t}}=0
$$

- It follows that $\left.\eta \wedge \omega_{E}\right|_{\mathcal{X}_{t}}=0$.

Proposition

Let \mathbf{u} be a continuous representative of u as above. Then

$$
\begin{aligned}
\partial \bar{\partial}\|u\|_{h_{\mathcal{F}}}^{2}= & c_{n}\left[-p_{\star}\left(\Theta_{h_{L}}(L)_{\mathrm{ac}} \wedge \mathbf{u} \wedge \overline{\mathbf{u}} e^{-\phi_{L}}\right)+(-1)^{n} p_{\star}\left(D^{\prime} \mathbf{u} \wedge \overline{D^{\prime} \mathbf{u}} e^{-\phi_{L}}\right)\right. \\
& \left.+(-1)^{n} p_{\star}\left(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\phi_{L}}\right)\right]
\end{aligned}
$$

Here $\Theta_{h_{L}}(L)_{\text {ac }}$ is the absolutely continuous part of the current $\Theta_{h_{L}}(L)$.

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.
- We consider ω_{E} a metric with Poincaré-type singularities along E and (L, h_{L}) as above.

PROOF OF THEOREM 1

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.
- We consider ω_{E} a metric with Poincaré-type singularities along E and (L, h_{L}) as above.

Theorem 3 [CP]

We have the following equality for $\left(X, \omega_{E}\right)$ and $\left(L, h_{L}\right)$.

PRoof of Theorem 1

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.
- We consider ω_{E} a metric with Poincaré-type singularities along E and $\left(L, h_{L}\right)$ as above.

Theorem 3 [CP]

We have the following equality for $\left(X, \omega_{E}\right)$ and $\left(L, h_{L}\right)$.

$$
L_{n, 1}^{2}\left(X_{0}, L\right)=\mathcal{H}_{n, 1}\left(X_{0}, L\right) \oplus \operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^{\star}
$$

where $X_{0}:=X \backslash Y$.

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.
- We consider ω_{E} a metric with Poincaré-type singularities along E and (L, h_{L}) as above.

Theorem 3 [CP]

We have the following equality for $\left(X, \omega_{E}\right)$ and $\left(L, h_{L}\right)$.

$$
L_{n, 1}^{2}\left(X_{0}, L\right)=\mathcal{H}_{n, 1}\left(X_{0}, L\right) \oplus \operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^{\star}
$$

where $X_{0}:=X \backslash Y$.

- This can be seen as part of L^{2}-Hodge theory (cf. work by A. Fujiki, S. Zucker, Pardon-Stein and more recently H. Auvray, P. Naumann...).

Hodge decomposition

- To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E=E_{1}+\cdots+E_{k}$ be a snc divisor.
- We consider ω_{E} a metric with Poincaré-type singularities along E and $\left(L, h_{L}\right)$ as above.

Theorem 3 [CP]

We have the following equality for $\left(X, \omega_{E}\right)$ and $\left(L, h_{L}\right)$.

$$
L_{n, 1}^{2}\left(X_{0}, L\right)=\mathcal{H}_{n, 1}\left(X_{0}, L\right) \oplus \operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^{\star}
$$

where $X_{0}:=X \backslash Y$.

- This can be seen as part of L^{2}-Hodge theory (cf. work by A. Fujiki, S. Zucker, Pardon-Stein and more recently H. Auvray, P. Naumann...).
- The proof based on the fact that $\left(X_{0}, \omega_{E}\right)$ complete, together with the following a-priori estimate.

Hodge decomposition, II

- Let $A:=\left[\sqrt{-1} \Theta_{h_{L}}(L), \Lambda_{\omega_{E}}\right]$ be the usual curvature operator. We consider

$$
H^{(p)}:=\left\{v \in H^{0}\left(X^{\circ}, \Omega_{X^{\circ}}^{p} \otimes L\right) \cap L^{2} ; \int_{X^{\circ}}\langle A \star v, \star v\rangle d V_{\omega_{E}}=0\right\} .
$$

Hodge decomposition, II

- Let $A:=\left[\sqrt{-1} \Theta_{h_{L}}(L), \Lambda_{\omega_{E}}\right]$ be the usual curvature operator. We consider

$$
H^{(p)}:=\left\{v \in H^{0}\left(X^{\circ}, \Omega_{X^{\circ}}^{p} \otimes L\right) \cap L^{2} ; \int_{X^{\circ}}\langle A \star v, \star v\rangle d V_{\omega_{E}}=0\right\} .
$$

- The following is an important ingredient in establishing the Hodge decomposition.

Theorem 4 (Poincaré inequality)

Let $p \leq n$ be a positive integer. There exists a positive constant $C>0$ such that

$$
\int_{X_{0}}|u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V \leq C\left(\int_{X_{0}}|\bar{\partial} u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V_{\omega_{E}}+\int_{X_{0}}\langle A \star u, \star u\rangle d V_{\omega_{E}}\right)
$$

for any L-valued form u of type $(p, 0)$ which belongs to the domain of $\bar{\partial}$ and which is orthogonal to the space $H^{(p)}$.

Hodge decomposition, II

- Let $A:=\left[\sqrt{-1} \Theta_{h_{L}}(L), \Lambda_{\omega_{E}}\right]$ be the usual curvature operator. We consider

$$
H^{(p)}:=\left\{v \in H^{0}\left(X^{\circ}, \Omega_{X^{\circ}}^{p} \otimes L\right) \cap L^{2} ; \int_{X^{\circ}}\langle A \star v, \star v\rangle d V_{\omega_{E}}=0\right\} .
$$

- The following is an important ingredient in establishing the Hodge decomposition.

Theorem 4 (Poincaré inequality)

Let $p \leq n$ be a positive integer. There exists a positive constant $C>0$ such that

$$
\int_{X_{0}}|u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V \leq C\left(\int_{X_{0}}|\bar{\partial} u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V_{\omega_{E}}+\int_{X_{0}}\langle A \star u, \star u\rangle d V_{\omega_{E}}\right)
$$

for any L-valued form u of type $(p, 0)$ which belongs to the domain of $\bar{\partial}$ and which is orthogonal to the space $H^{(p)}$.

- Application: same results hold for metrics with conic singularities along Y

$$
\left.\omega_{\mathcal{C}}\right|_{\Omega}=\sum_{i=1}^{r} \frac{\sqrt{-1} d z_{i} \wedge d \bar{z}_{i}}{\left|z_{i}\right|^{2 \frac{m_{i}-1}{m_{i}}}}+\sum_{i=r+1}^{n} \sqrt{-1} d z_{i} \wedge d \bar{z}_{i}
$$

End of the proof of Theorem 1

- We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \operatorname{dim}\left(\operatorname{ker}\left(\Delta_{t}^{\prime \prime}\right)\right)$ is constant. Then there exists $C>0$:

$$
\int_{X_{t}}|u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V_{\omega_{E}} \leq C\left(\int_{X_{t}}|\bar{\partial} u|_{\omega_{E}}^{2} e^{-\phi} d V_{\omega_{E}}+\int_{X_{t}}\langle A \star u, \star u\rangle d V_{\omega_{E}}\right)
$$

for all L^{2} forms u orthogonal to the space $H_{t}^{(p)}$ defined on the fiber X_{t}.

End of the proof of Theorem 1

- We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \operatorname{dim}\left(\operatorname{ker}\left(\Delta_{t}^{\prime \prime}\right)\right)$ is constant. Then there exists $C>0$:

$$
\int_{X_{t}}|u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V_{\omega_{E}} \leq C\left(\int_{X_{t}}|\bar{\partial} u|_{\omega_{E}}^{2} e^{-\phi} d V_{\omega_{E}}+\int_{X_{t}}\langle A \star u, \star u\rangle d V_{\omega_{E}}\right)
$$

for all L^{2} forms u orthogonal to the space $H_{t}^{(p)}$ defined on the fiber X_{t}.

- Theorem 1 is proved as follows:
- Consider the representative \mathbf{u} of u given by contraction with the canonical lifting of $\frac{\partial}{\partial t}$

End of the proof of Theorem 1

- We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \operatorname{dim}\left(\operatorname{ker}\left(\Delta_{t}^{\prime \prime}\right)\right)$ is constant. Then there exists $C>0$:

$$
\int_{X_{t}}|u|_{\omega_{E}}^{2} e^{-\varphi_{L}} d V_{\omega_{E}} \leq C\left(\int_{X_{t}}|\bar{\partial} u|_{\omega_{E}}^{2} e^{-\phi} d V_{\omega_{E}}+\int_{X_{t}}\langle A \star u, \star u\rangle d V_{\omega_{E}}\right)
$$

for all L^{2} forms u orthogonal to the space $H_{t}^{(p)}$ defined on the fiber X_{t}.

- Theorem 1 is proved as follows:
- Consider the representative \mathbf{u} of u given by contraction with the canonical lifting of $\frac{\partial}{\partial t}$
- Since $D_{\mathcal{F}}^{\prime} u=0$, it follows that if $D^{\prime} \mathbf{u}=d t \wedge \mu$ then $\left.\mu\right|_{\mathcal{X}_{t}}$ is $\bar{\partial}^{\star}$-exact.

End of the proof of Theorem 1

- By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^{\star} \beta_{t}=\left.\mu\right|_{\mathcal{X}_{t}}$. Moreover, can assume that β_{t} orthogonal to $\operatorname{Ker}\left(\bar{\partial}^{\star}\right)$.

End of the proof of Theorem 1

- By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^{\star} \beta_{t}=\left.\mu\right|_{\mathcal{X}_{t}}$. Moreover, can assume that β_{t} orthogonal to $\operatorname{Ker}\left(\bar{\partial}^{\star}\right)$.
- The family $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is varying continuously with respect to t.

End of the proof of Theorem 1

- By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^{\star} \beta_{t}=\left.\mu\right|_{\mathcal{X}_{t}}$. Moreover, can assume that β_{t} orthogonal to $\operatorname{Ker}\left(\bar{\partial}^{\star}\right)$.
- The family $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_{1}:=u-d t \wedge \star_{t} \beta_{t}$: it is the representative we are looking for.

End of the proof of Theorem 1

- By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^{\star} \beta_{t}=\left.\mu\right|_{\mathcal{X}_{t}}$. Moreover, can assume that β_{t} orthogonal to $\operatorname{Ker}\left(\bar{\partial}^{\star}\right)$.
- The family $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_{1}:=u-d t \wedge \star_{t} \beta_{t}$: it is the representative we are looking for.

A remark

The continuity of $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is reasonably involved, based on Theorem 5 combined with standard arguments. Actually the statement should be that $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is a smooth family.

End of the proof of Theorem 1

- By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^{\star} \beta_{t}=\left.\mu\right|_{\mathcal{X}_{t}}$. Moreover, can assume that β_{t} orthogonal to $\operatorname{Ker}\left(\bar{\partial}^{\star}\right)$.
- The family $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_{1}:=u-d t \wedge \star_{t} \beta_{t}$: it is the representative we are looking for.

A remark

The continuity of $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is reasonably involved, based on Theorem 5 combined with standard arguments. Actually the statement should be that $\left(\beta_{t}\right)_{t \in \mathbb{D}}$ is a smooth family.

- In what follows we discuss the proof of Theorem 2.
- We consider the following setting:

A version of Theorem 2

- We consider the following setting:
- The curvature current of $\left(L, h_{L}\right)$ can be written as

$$
\sqrt{-1} \Theta\left(L, h_{L}\right)=\omega_{L}+[F]
$$

- We consider the following setting:
- The curvature current of $\left(L, h_{L}\right)$ can be written as

$$
\sqrt{-1} \Theta\left(L, h_{L}\right)=\omega_{L}+[F]
$$

- F effective, its support is snc and transverse to fibers

A version of Theorem 2

- We consider the following setting:
- The curvature current of $\left(L, h_{L}\right)$ can be written as

$$
\sqrt{-1} \Theta\left(L, h_{L}\right)=\omega_{L}+[F]
$$

- F effective, its support is snc and transverse to fibers
- The smooth form $\omega_{L} \geq 0$ on \mathcal{X} and fiber-wise Kähler.

A version of Theorem 2

- We consider the following setting:
- The curvature current of $\left(L, h_{L}\right)$ can be written as

$$
\sqrt{-1} \Theta\left(L, h_{L}\right)=\omega_{L}+[F]
$$

- F effective, its support is snc and transverse to fibers
- The smooth form $\omega_{L} \geq 0$ on \mathcal{X} and fiber-wise Kähler.
- We have the following result.

Theorem 2'

Consider $p: \mathcal{X} \rightarrow \mathbb{D}$ and $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ as above. For every $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and any $t \in \mathbb{D}$

A version of Theorem 2

- We consider the following setting:
- The curvature current of $\left(L, h_{L}\right)$ can be written as

$$
\sqrt{-1} \Theta\left(L, h_{L}\right)=\omega_{L}+[F]
$$

- F effective, its support is snc and transverse to fibers
- The smooth form $\omega_{L} \geq 0$ on \mathcal{X} and fiber-wise Kähler.
- We have the following result.

Theorem 2'

Consider $p: \mathcal{X} \rightarrow \mathbb{D}$ and $\left(L, h_{L}\right) \rightarrow \mathcal{X}$ as above. For every $u \in H^{0}(\mathbb{D}, \mathcal{F})$ and any $t \in \mathbb{D}$

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}}}(\mathcal{F}) u, u\right\rangle_{t} \geq c_{n} \int_{X_{t}} c\left(\omega_{L}\right) u \wedge \bar{u} e^{-\varphi_{L}}
$$

Approximation

- We proceed by approximation

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

- A few properties:

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

- A few properties:
- There exists $C>0$ such that $c\left(\omega_{L, \varepsilon}\right) \leq C$ and $\lim _{\varepsilon \rightarrow 0} c\left(\omega_{L, \varepsilon}\right)=c\left(\omega_{L}\right)$.

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

- A few properties:
- There exists $C>0$ such that $c\left(\omega_{L, \varepsilon}\right) \leq C$ and $\lim _{\varepsilon \rightarrow 0} c\left(\omega_{L, \varepsilon}\right)=c\left(\omega_{L}\right)$.
- Let $h_{L, \varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L, \varepsilon}$. Then $\mathcal{I}\left(h_{L, \varepsilon}\right)=\mathcal{I}\left(h_{L}\right)$.

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

- A few properties:
- There exists $C>0$ such that $c\left(\omega_{L, \varepsilon}\right) \leq C$ and $\lim _{\varepsilon \rightarrow 0} c\left(\omega_{L, \varepsilon}\right)=c\left(\omega_{L}\right)$.
- Let $h_{L, \varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L, \varepsilon}$. Then $\mathcal{I}\left(h_{L, \varepsilon}\right)=\mathcal{I}\left(h_{L}\right)$.
- Let \mathbf{u}_{ε} be the representative of u given by $\left.V_{\varepsilon}\right\rfloor\left(d t \wedge U_{0}\right)$.

Approximation

- We proceed by approximation

$$
\omega_{L, \varepsilon}:=\omega_{L}+\delta_{\varepsilon} \sqrt{-1} d t \wedge d \bar{t}-\sqrt{-1} \varepsilon \sum_{i} \partial \bar{\partial} \log \log \frac{1}{\left|s_{i}\right|^{2}}
$$

- A few properties:
- There exists $C>0$ such that $c\left(\omega_{L, \varepsilon}\right) \leq C$ and $\lim _{\varepsilon \rightarrow 0} c\left(\omega_{L, \varepsilon}\right)=c\left(\omega_{L}\right)$.
- Let $h_{L, \varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L, \varepsilon}$. Then $\mathcal{I}\left(h_{L, \varepsilon}\right)=\mathcal{I}\left(h_{L}\right)$.
- Let \mathbf{u}_{ε} be the representative of u given by $\left.V_{\varepsilon}\right\rfloor\left(d t \wedge U_{0}\right)$.
- We introduce: $\bar{\partial} \mathbf{u}_{\varepsilon}=d t \wedge \eta_{\varepsilon}$ and $D^{\prime} \mathbf{u}_{\varepsilon}=d t \wedge \mu_{\varepsilon}$.

End of the proof

- Our current context: $\left(X, \omega_{L, \varepsilon}\right)$ and $\left(L, h_{L, \varepsilon}\right)$

End of the proof

- Our current context: $\left(X, \omega_{L, \varepsilon}\right)$ and $\left(L, h_{L, \varepsilon}\right)$
- The curvature formula looks better:

$$
-\frac{\partial^{2}}{\partial t \partial \bar{t}}\left(\|u\|_{h_{\mathcal{F}, \varepsilon}}^{2}\right)=c_{n} \int_{X_{t}} c\left(\omega_{\varepsilon}\right) \mathbf{u}_{\varepsilon} \wedge \overline{\mathbf{u}}_{\varepsilon} e^{-\varphi_{\varepsilon}}+\int_{X_{t}}\left|\eta_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}-\int_{X_{t}}\left|\mu_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

End of the proof

- Our current context: $\left(X, \omega_{L, \varepsilon}\right)$ and $\left(L, h_{L, \varepsilon}\right)$
- The curvature formula looks better:

$$
-\frac{\partial^{2}}{\partial t \partial \bar{t}}\left(\|u\|_{h_{\mathcal{F}, \varepsilon}}^{2}\right)=c_{n} \int_{X_{t}} c\left(\omega_{\varepsilon}\right) \mathbf{u}_{\varepsilon} \wedge \overline{\mathbf{u}}_{\varepsilon} e^{-\varphi_{\varepsilon}}+\int_{X_{t}}\left|\eta_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}-\int_{X_{t}}\left|\mu_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

- The LHS is equal to

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}}, \varepsilon}(\mathcal{F}) u, u\right\rangle-\left\|P\left(\mu_{\varepsilon}\right)\right\|^{2}
$$

End of the proof

- Our current context: $\left(X, \omega_{L, \varepsilon}\right)$ and $\left(L, h_{L, \varepsilon}\right)$
- The curvature formula looks better:

$$
-\frac{\partial^{2}}{\partial t \partial \bar{t}}\left(\|u\|_{h_{\mathcal{F}, \varepsilon}}^{2}\right)=c_{n} \int_{X_{t}} c\left(\omega_{\varepsilon}\right) \mathbf{u}_{\varepsilon} \wedge \overline{\mathbf{u}}_{\varepsilon} e^{-\varphi_{\varepsilon}}+\int_{X_{t}}\left|\eta_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}-\int_{X_{t}}\left|\mu_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

- The LHS is equal to

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}, \varepsilon}}(\mathcal{F}) u, u\right\rangle-\left\|P\left(\mu_{\varepsilon}\right)\right\|^{2}
$$

- We have $\bar{\partial} \mu_{\varepsilon}=D^{\prime} \eta_{\varepsilon}$ which combined with L^{2} estimates:

$$
\int_{X_{t}}\left|\mu_{\varepsilon}^{\perp}\right|_{\omega_{\varepsilon}}^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}} \leq \int_{X_{t}}\left|\eta_{\varepsilon}\right|_{\omega_{\varepsilon}}^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

End of the proof

- Our current context: $\left(X, \omega_{L, \varepsilon}\right)$ and $\left(L, h_{L, \varepsilon}\right)$
- The curvature formula looks better:

$$
-\frac{\partial^{2}}{\partial t \partial \bar{t}}\left(\|u\|_{h_{\mathcal{F}, \varepsilon}}^{2}\right)=c_{n} \int_{X_{t}} c\left(\omega_{\varepsilon}\right) \mathbf{u}_{\varepsilon} \wedge \overline{\mathbf{u}}_{\varepsilon} e^{-\varphi_{\varepsilon}}+\int_{X_{t}}\left|\eta_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}-\int_{X_{t}}\left|\mu_{\varepsilon}\right|^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

- The LHS is equal to

$$
\left\langle\sqrt{-1} \Theta_{h_{\mathcal{F}, \varepsilon}}(\mathcal{F}) u, u\right\rangle-\left\|P\left(\mu_{\varepsilon}\right)\right\|^{2}
$$

- We have $\bar{\partial} \mu_{\varepsilon}=D^{\prime} \eta_{\varepsilon}$ which combined with L^{2} estimates:

$$
\int_{X_{t}}\left|\mu_{\varepsilon}^{\perp}\right|_{\omega_{\varepsilon}}^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}} \leq \int_{X_{t}}\left|\eta_{\varepsilon}\right|_{\omega_{\varepsilon}}^{2} e^{-\varphi_{\varepsilon}} d V_{\omega_{\varepsilon}}
$$

- The decomposition $\mu_{\varepsilon}=P\left(\mu_{\varepsilon}\right)+\mu_{\varepsilon}^{\perp}$ is orthogonal and we are done.

