Curvature of direct image of singular twisted relative canonical bundles

(joint with J. Cao and H. Guenancia)

Amazing Conference June 2nd, 2021

Mihai PAUN Universität Bayreuth, Germany

1. Introduction

2. Proof of Theorem 1

3. Proof of Theorem 2

Notations

We will use the following notations:

• $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.

Notations

We will use the following notations:

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

Notations

We will use the following notations:

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

• $E = \sum E_i$ divisor on \mathcal{X} such that $E + \mathcal{X}_t$ snc for all $t \in \mathbb{D}$. Can choose $(z_1, \ldots, z_n, z_{n+1} = 1)$ coordinates on Ω such that $E \cap \Omega = (z_1 \ldots z_k = 0)$ and p(z) = t.

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}
- $E = \sum E_i$ divisor on \mathcal{X} such that $E + \mathcal{X}_t$ snc for all $t \in \mathbb{D}$. Can choose $(z_1, \ldots, z_n, z_{n+1} = 1)$ coordinates on Ω such that $E \cap \Omega = (z_1 \ldots z_k = 0)$ and p(z) = t.
- $(L, h_L) \to \mathcal{X}$ line bundle, $h_L = e^{-\varphi_L}$ such that modulo \mathcal{C}^{∞}

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

• $E = \sum E_i$ divisor on \mathcal{X} such that $E + \mathcal{X}_t$ snc for all $t \in \mathbb{D}$. Can choose $(z_1, \ldots, z_n, z_{n+1} = 1)$ coordinates on Ω such that $E \cap \Omega = (z_1 \ldots z_k = 0)$ and p(z) = t.

• $(L, h_L) \to \mathcal{X}$ line bundle, $h_L = e^{-\varphi_L}$ such that modulo \mathcal{C}^{∞}

$$\varphi_L \simeq \sum_{i=1}^k a_i \log |z_i|^2 - \sum_{I \subset \{1,\dots,k\}} b_i \log \left(\phi_I - \log \prod_{i \in I} |z_i|^2 \right) \qquad a_i, b_I > 0.$$

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

• $E = \sum E_i$ divisor on \mathcal{X} such that $E + \mathcal{X}_t$ snc for all $t \in \mathbb{D}$. Can choose $(z_1, \ldots, z_n, z_{n+1} = 1)$ coordinates on Ω such that $E \cap \Omega = (z_1 \ldots z_k = 0)$ and p(z) = t.

• $(L, h_L) \to \mathcal{X}$ line bundle, $h_L = e^{-\varphi_L}$ such that modulo \mathcal{C}^{∞}

$$\varphi_L \simeq \sum_{i=1}^k a_i \log |z_i|^2 - \sum_{I \subset \{1, \dots, k\}} b_i \log \left(\phi_I - \log \prod_{i \in I} |z_i|^2 \right) \qquad a_i, b_I > 0.$$

• $\mathcal{I}(h_L)$ is the multiplier ideal sheaf of h_L .

- $p: \mathcal{X} \to \mathbb{D}$ proper, smooth Kähler family, $\mathcal{X}_t := p^{-1}(t)$.
- $K_{\mathcal{X}/\mathbb{D}}$ is the relative canonical bundle of \mathcal{X}

• $E = \sum E_i$ divisor on \mathcal{X} such that $E + \mathcal{X}_t$ snc for all $t \in \mathbb{D}$. Can choose $(z_1, \ldots, z_n, z_{n+1} = 1)$ coordinates on Ω such that $E \cap \Omega = (z_1 \ldots z_k = 0)$ and p(z) = t.

• $(L, h_L) \to \mathcal{X}$ line bundle, $h_L = e^{-\varphi_L}$ such that modulo \mathcal{C}^{∞}

$$\varphi_L \simeq \sum_{i=1}^k a_i \log |z_i|^2 - \sum_{I \subset \{1, \dots, k\}} b_i \log \left(\phi_I - \log \prod_{i \in I} |z_i|^2 \right) \qquad a_i, b_I > 0.$$

- $\mathcal{I}(h_L)$ is the multiplier ideal sheaf of h_L .
- $\mathcal{F} := p_{\star} \left((K_{\mathcal{X}/\mathbb{D}} + L) \otimes \mathcal{I}(h_L) \right)$. Note that we have

$$\mathcal{F}_t = H^0 \big(\mathcal{X}_t, (K_{\mathcal{X}_t} + L) \otimes \mathcal{I}(h_L|_{\mathcal{X}_t}) \big)$$

The main results, I

• Let
$$u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$$
. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a (n, 0) form **u** on \mathcal{X} with values in L such that

$$\mathbf{u}|_{\mathcal{X}_t} = u_t, \qquad \frac{\partial \mathbf{u}}{d\bar{t}}\Big|_{\mathcal{X}_t} \in L^2$$

The main results, I

- Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$
- Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a (n, 0) form **u** on \mathcal{X} with values in L such that

$$\mathbf{u}|_{\mathcal{X}_t} = u_t, \qquad \frac{\partial \mathbf{u}}{d\overline{t}}\Big|_{\mathcal{X}_t} \in L^2$$

• Let $D_{\mathcal{F}} = D'_{\mathcal{F}} + \bar{\partial}$ be the induced Chern connection.

The main results, I

• Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$

• Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a (n, 0) form **u** on \mathcal{X} with values in L such that

$$\mathbf{u}|_{\mathcal{X}_t} = u_t, \qquad \frac{\partial \mathbf{u}}{d\overline{t}}\Big|_{\mathcal{X}_t} \in L^2$$

• Let $D_{\mathcal{F}} = D'_{\mathcal{F}} + \bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ and $(L, h_L) \to \mathcal{X}$ as above (with $b_I = 0$) and let $u \in H^0(\mathbb{D}, \mathcal{F})$. We assume that

$$\sqrt{-1}\Theta(L,h_L) \ge 0, \qquad D'_{\mathcal{F}}u = 0.$$

The main results, I

• Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$

• Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a (n, 0) form **u** on \mathcal{X} with values in L such that

$$\mathbf{u}|_{\mathcal{X}_t} = u_t, \qquad \frac{\partial \mathbf{u}}{d\overline{t}}\Big|_{\mathcal{X}_t} \in L^2$$

• Let $D_{\mathcal{F}} = D'_{\mathcal{F}} + \bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ and $(L, h_L) \to \mathcal{X}$ as above (with $b_I = 0$) and let $u \in H^0(\mathbb{D}, \mathcal{F})$. We assume that

$$\sqrt{-1}\Theta(L,h_L) \ge 0, \qquad D'_{\mathcal{F}}u = 0.$$

Then there exists a continuous L^2 representative **u** of u defined on $p: \mathcal{X}^* \setminus E \to \mathbb{D}^*$ such that

The main results, I

• Let $u, v \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. Define $h_{\mathcal{F}}(u, v)_t := c_n \int_{\mathcal{X}_t} u \wedge \overline{v} e^{-\varphi_L}$

• Let $u \in \mathcal{C}^{\infty}(\mathbb{D}, \mathcal{F})$. A representative for u is a (n, 0) form **u** on \mathcal{X} with values in L such that

$$\mathbf{u}|_{\mathcal{X}_t} = u_t, \qquad \frac{\partial \mathbf{u}}{d\overline{t}}\Big|_{\mathcal{X}_t} \in L^2$$

• Let $D_{\mathcal{F}} = D'_{\mathcal{F}} + \bar{\partial}$ be the induced Chern connection.

Theorem 1 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ and $(L, h_L) \to \mathcal{X}$ as above (with $b_I = 0$) and let $u \in H^0(\mathbb{D}, \mathcal{F})$. We assume that

$$\sqrt{-1}\Theta(L,h_L) \ge 0, \qquad D'_{\mathcal{F}}u = 0.$$

Then there exists a continuous L^2 representative **u** of u defined on $p: \mathcal{X}^* \setminus E \to \mathbb{D}^*$ such that

$$\frac{\partial \mathbf{u}}{\partial t}\Big|_{X_t \setminus E} = 0, \qquad D'\mathbf{u} = 0, \qquad \Theta_{h_L}(L) \wedge \mathbf{u} = 0.$$

on $\mathcal{X}^{\star} \setminus E, t \in D^{\star}$.

• We will also discuss the following.

• We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ be a smooth projective fibration and let $(L, h_L) \to \mathcal{X}$ be a line bundle as above, together with

• We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ be a smooth projective fibration and let $(L, h_L) \to \mathcal{X}$ be a line bundle as above, together with

1. $\sqrt{-1}\Theta_{h_L}(L) \ge 0$

• We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ be a smooth projective fibration and let $(L, h_L) \to \mathcal{X}$ be a line bundle as above, together with

- 1. $\sqrt{-1}\Theta_{h_L}(L) \ge 0$
- 2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_L := \sqrt{-1}\Theta_{h_L}(L)_{\mathrm{ac}}$ satisfies $\int_{X_t} \omega_L^n > 0.$

• We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ be a smooth projective fibration and let $(L, h_L) \to \mathcal{X}$ be a line bundle as above, together with

- 1. $\sqrt{-1}\Theta_{h_L}(L) \ge 0$
- 2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_L := \sqrt{-1}\Theta_{h_L}(L)_{\mathrm{ac}}$ satisfies $\int_{X_t} \omega_L^n > 0.$

Then there exists $D^* \subset D$ such that $\forall t \in \mathbb{D}^*$ and for any $u \in H^0(\mathbb{D}, \mathcal{F})$

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F}}}(\mathcal{F})u,u\rangle_t \geq c_n \int_{X_t} c(\omega_L)u \wedge \overline{u}e^{-\phi_L}$$

• We will also discuss the following.

Theorem 2 [CGP]

Let $p: \mathcal{X} \to \mathbb{D}$ be a smooth projective fibration and let $(L, h_L) \to \mathcal{X}$ be a line bundle as above, together with

- $1. \ \sqrt{-1}\Theta_{h_L}(L) \ge 0$
- 2. For any $t \in \mathbb{D}$, the absolutely continuous part $\omega_L := \sqrt{-1}\Theta_{h_L}(L)_{\mathrm{ac}}$ satisfies $\int_{X_t} \omega_L^n > 0.$

Then there exists $D^* \subset D$ such that $\forall t \in \mathbb{D}^*$ and for any $u \in H^0(\mathbb{D}, \mathcal{F})$

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F}}}(\mathcal{F})u,u\rangle_t \geq c_n \int_{X_t} c(\omega_L)u \wedge \overline{u}e^{-\phi_L}$$

• $c(\omega_L) := \frac{\omega_L^{n+1}}{\omega_L^n \wedge idt \wedge d\bar{t}}$ the geodesic curvature associated to ω_L (defined by approximation in the degenerate case).

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

A few remarks:

▶ In all the known particular cases the sheaf $\mathcal{F}_m := p_\star (m(K_{X/Y} + B))$ plays a crucial role

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

- ▶ In all the known particular cases the sheaf $\mathcal{F}_m := p_\star (m(K_{X/Y} + B))$ plays a crucial role
- One can construct a natural, positively curved metric h_m on \mathcal{F}_m .

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

- ▶ In all the known particular cases the sheaf $\mathcal{F}_m := p_\star (m(K_{X/Y} + B))$ plays a crucial role
- One can construct a natural, positively curved metric h_m on \mathcal{F}_m .
- Consider $\mathcal{L}_m := \det(\mathcal{F}_m)$; conjecture known if \mathcal{L}_m big or $c_1(\mathcal{L}_m) = 0$.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

- ▶ In all the known particular cases the sheaf $\mathcal{F}_m := p_\star (m(K_{X/Y} + B))$ plays a crucial role
- One can construct a natural, positively curved metric h_m on \mathcal{F}_m .
- Consider $\mathcal{L}_m := \det(\mathcal{F}_m)$; conjecture known if \mathcal{L}_m big or $c_1(\mathcal{L}_m) = 0$.
- ▶ Theorem 1: attempt to understand better the intermediate case.

Conjecture [litaka]

Let (X, B) be a projective manifold together with an effective \mathbb{Q} -divisor B such that $\mathcal{I}(B) = \mathcal{O}_X$. Then

$$\kappa(X,B) \ge \kappa(X_t,B_t) + \kappa(Y)$$

 $\kappa =$ Kodaira dimension (growth order of the space of pluricanonical sections).

- ▶ In all the known particular cases the sheaf $\mathcal{F}_m := p_\star (m(K_{X/Y} + B))$ plays a crucial role
- One can construct a natural, positively curved metric h_m on \mathcal{F}_m .
- Consider $\mathcal{L}_m := \det(\mathcal{F}_m)$; conjecture known if \mathcal{L}_m big or $c_1(\mathcal{L}_m) = 0$.
- ▶ Theorem 1: attempt to understand better the intermediate case.
- We discuss next the main ingredients in the proof.

PROOF OF THEOREM 1 The non-singular case: Berndtsson's approach

• In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.

PROOF OF THEOREM 1 The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.

PROOF OF THEOREM 1

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- The non-singular version Theorem 1 follows:
 - We have u such that $D'_{\mathcal{F}}u = 0$.

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- The non-singular version Theorem 1 follows:
 - We have u such that $D'_{\mathcal{F}}u = 0$.
 - \blacktriangleright Hodge theory shows that $\exists \mathbf{u}$ such that

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- The non-singular version Theorem 1 follows:
 - We have u such that $D'_{\mathcal{F}}u = 0$.
 - \blacktriangleright Hodge theory shows that $\exists \mathbf{u}$ such that

$$\bar{\partial} \mathbf{u} = dt \wedge \eta, \qquad D' \mathbf{u} = dt \wedge \mu$$

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- The non-singular version Theorem 1 follows:
 - We have u such that $D'_{\mathcal{F}}u = 0$.
 - Hodge theory shows that $\exists \mathbf{u}$ such that

$$\bar{\partial} \mathbf{u} = dt \wedge \eta, \qquad D' \mathbf{u} = dt \wedge \mu$$

on each \mathcal{X}_t , where $\eta \wedge \omega|_{\mathcal{X}_t} = 0$ and $\mu|_{\mathcal{X}_t} = 0$. This is achieved by solving a fiber-wise $\bar{\partial}^*$ equation.

The non-singular case: Berndtsson's approach

- In his work concerning the positivity properties of $(\mathcal{F}, h_{\mathcal{F}})$, Berndtsson is using the following technique.
 - ▶ Let ω be a Kähler metric on \mathcal{X} . Consider $u \in H^0(\mathbb{D}, \mathcal{F})$ and $\mathbf{u} =$ any representative of u.
 - ▶ In case of a non-singular metric h_L we have the following formula

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^{2} &= c_{n} \Big[-p_{\star}(\Theta_{h_{L}}(L) \wedge \mathbf{u} \wedge \bar{\mathbf{u}}e^{-\varphi_{L}}) + (-1)^{n} p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}}e^{-\varphi_{L}}) \\ &+ (-1)^{n} p_{\star}(\bar{\partial}\mathbf{u} \wedge \overline{\bar{\partial}\mathbf{u}}e^{-\varphi_{L}}) \Big] \end{aligned}$$

- The non-singular version Theorem 1 follows:
 - We have u such that $D'_{\mathcal{F}}u = 0$.
 - Hodge theory shows that $\exists \mathbf{u}$ such that

$$\bar{\partial} \mathbf{u} = dt \wedge \eta, \qquad D' \mathbf{u} = dt \wedge \mu$$

on each \mathcal{X}_t , where $\eta \wedge \omega|_{\mathcal{X}_t} = 0$ and $\mu|_{\mathcal{X}_t} = 0$. This is achieved by solving a fiber-wise $\bar{\partial}^*$ equation.

▶ The LHS of formula is zero; Theorem 1 follows by using the representative **u** above.

The general case: construction of representatives

• Back to the general setting (i.e. h_L as in a few clicks above)

The general case: construction of representatives

- Back to the general setting (i.e. h_L as in a few clicks above)
- \bullet We use a metric on ${\mathcal X}$ with Poincaré singularities along E

The general case: construction of representatives

- Back to the general setting (i.e. h_L as in a few clicks above)
- \bullet We use a metric on ${\mathcal X}$ with Poincaré singularities along E

$$\omega_E := \omega + \sqrt{-1} \partial \bar{\partial} \Big[-\sum_{i=1}^N \log \log \frac{1}{|s_i|^2} \Big]$$

The general case: construction of representatives

- Back to the general setting (i.e. h_L as in a few clicks above)
- \bullet We use a metric on ${\mathcal X}$ with Poincaré singularities along E

$$\omega_E := \omega + \sqrt{-1} \partial \bar{\partial} \Big[-\sum_{i=1}^N \log \log \frac{1}{|s_i|^2} \Big]$$

• Consider local co-ordinates $(z_1, \ldots, z_n, z_{n+1} = t)$ such that p(z) = t

$$\omega_E|_{\Omega} = g_{t\bar{t}} \, idt \wedge d\bar{t} + \sum_{\alpha} g_{\alpha\bar{t}} \, idz_{\alpha} \wedge d\bar{t} + \sum_{\alpha} g_{t\bar{\alpha}} \, idt \wedge d\bar{z}_{\alpha} + \sum_{\alpha,\beta} g_{\alpha\bar{\beta}} \, idz_{\alpha} \wedge d\bar{z}_{\beta}$$

The general case: construction of representatives

- Back to the general setting (i.e. h_L as in a few clicks above)
- \bullet We use a metric on ${\mathcal X}$ with Poincaré singularities along E

$$\omega_E := \omega + \sqrt{-1}\partial\bar{\partial} \Big[-\sum_{i=1}^N \log\log\frac{1}{|s_i|^2} \Big]$$

• Consider local co-ordinates $(z_1, \ldots, z_n, z_{n+1} = t)$ such that p(z) = t

$$\omega_E|_{\Omega} = g_{t\bar{t}} \, idt \wedge d\bar{t} + \sum_{\alpha} g_{\alpha\bar{t}} \, idz_{\alpha} \wedge d\bar{t} + \sum_{\alpha} g_{t\bar{\alpha}} \, idt \wedge d\bar{z}_{\alpha} + \sum_{\alpha,\beta} g_{\alpha\bar{\beta}} \, idz_{\alpha} \wedge d\bar{z}_{\beta}$$

• The horizontal lifting of $\frac{\partial}{\partial t}$ given by

$$V:=\frac{\partial}{\partial t}-\sum_{\alpha,\beta}g^{\bar{\beta}\alpha}g_{t\bar{\beta}}\frac{\partial}{\partial z_{\alpha}}$$

The general case: construction of representatives

- Back to the general setting (i.e. h_L as in a few clicks above)
- \bullet We use a metric on ${\mathcal X}$ with Poincaré singularities along E

$$\omega_E := \omega + \sqrt{-1}\partial\bar{\partial} \Big[-\sum_{i=1}^N \log\log \frac{1}{|s_i|^2} \Big]$$

• Consider local co-ordinates $(z_1, \ldots, z_n, z_{n+1} = t)$ such that p(z) = t

$$\omega_E|_{\Omega} = g_{t\bar{t}} \, idt \wedge d\bar{t} + \sum_{\alpha} g_{\alpha\bar{t}} \, idz_{\alpha} \wedge d\bar{t} + \sum_{\alpha} g_{t\bar{\alpha}} \, idt \wedge d\bar{z}_{\alpha} + \sum_{\alpha,\beta} g_{\alpha\bar{\beta}} \, idz_{\alpha} \wedge d\bar{z}_{\beta}$$

- The horizontal lifting of $\frac{\partial}{\partial t}$ given by $V := \frac{\partial}{\partial t} - \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} g_{t\bar{\beta}} \frac{\partial}{\partial z_{\alpha}}$
- Let u be a section of \mathcal{F} . We define

$$\mathbf{u} := V \rfloor (dt \wedge U_0)$$

where U_0 is an arbitrary representative of u.

Properties of ${\bf u}$ and a general curvature formula

• We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.

Properties of ${\bf u}$ and a general curvature formula

• We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.

• The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.
 - ▶ The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .
 - ▶ The forms \mathbf{u}, η, μ and $\bar{\partial}\mu$ are also in $L^2(\mathcal{X})$

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.
 - ▶ The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .
 - ▶ The forms \mathbf{u}, η, μ and $\bar{\partial}\mu$ are also in $L^2(\mathcal{X})$
 - We also have $\mathbf{u} \wedge \omega_E|_{\Omega} = a(z,t)g_{t\bar{t}} dt \wedge d\bar{t} \wedge dz_1 \wedge \ldots \wedge dz_n$. Thus

$$\left. \frac{\mathbf{u} \wedge \omega_E}{dt} \right|_{\mathcal{X}_t} = 0.$$

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.
 - The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .
 - ▶ The forms \mathbf{u}, η, μ and $\bar{\partial}\mu$ are also in $L^2(\mathcal{X})$
 - We also have $\mathbf{u} \wedge \omega_E|_{\Omega} = a(z,t)g_{t\bar{t}} dt \wedge d\bar{t} \wedge dz_1 \wedge \ldots \wedge dz_n$. Thus

$$\frac{\mathbf{u} \wedge \omega_E}{dt}\Big|_{\mathcal{X}_t} = 0.$$

• It follows that $\eta \wedge \omega_E |_{\mathcal{X}_t} = 0$.

Properties of u and a general curvature formula

- We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.
 - The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .
 - ▶ The forms \mathbf{u}, η, μ and $\bar{\partial}\mu$ are also in $L^2(\mathcal{X})$
 - We also have $\mathbf{u} \wedge \omega_E|_{\Omega} = a(z,t)g_{t\bar{t}} dt \wedge d\bar{t} \wedge dz_1 \wedge \ldots \wedge dz_n$. Thus

$$\frac{\mathbf{u} \wedge \omega_E}{dt}\Big|_{\mathcal{X}_t} = 0.$$

• It follows that
$$\eta \wedge \omega_E |_{\mathcal{X}_t} = 0$$
.

Proposition

Let ${\bf u}$ be a continuous representative of u as above. Then

Properties of \mathbf{u} and a general curvature formula

- We define $\bar{\partial} \mathbf{u} = dt \wedge \eta$ and $D' \mathbf{u} = dt \wedge \mu$.
 - The forms $\eta|_{\mathcal{X}_t}, \mu|_{\mathcal{X}_t}$ and $\mu|_{\mathcal{X}_t}$ are L^2 .
 - ▶ The forms \mathbf{u}, η, μ and $\bar{\partial}\mu$ are also in $L^2(\mathcal{X})$
 - We also have $\mathbf{u} \wedge \omega_E|_{\Omega} = a(z,t)g_{t\bar{t}} dt \wedge d\bar{t} \wedge dz_1 \wedge \ldots \wedge dz_n$. Thus

$$\frac{\mathbf{u} \wedge \omega_E}{dt}\Big|_{\mathcal{X}_t} = 0.$$

• It follows that
$$\eta \wedge \omega_E |_{\mathcal{X}_t} = 0$$
.

Proposition

Let ${\bf u}$ be a continuous representative of u as above. Then

$$\begin{aligned} \partial \bar{\partial} \|u\|_{h_{\mathcal{F}}}^2 &= c_n \bigg[-p_{\star}(\Theta_{h_L}(L)_{\mathrm{ac}} \wedge \mathbf{u} \wedge \bar{\mathbf{u}} e^{-\phi_L}) + (-1)^n p_{\star}(D'\mathbf{u} \wedge \overline{D'\mathbf{u}} e^{-\phi_L}) \\ &+ (-1)^n p_{\star}(\bar{\partial} \mathbf{u} \wedge \overline{\bar{\partial} \mathbf{u}} e^{-\phi_L}) \bigg] \end{aligned}$$

Here $\Theta_{h_L}(L)_{\mathrm{ac}}$ is the absolutely continuous part of the current $\Theta_{h_L}(L)$.

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

• We consider ω_E a metric with Poincaré-type singularities along E and (L, h_L) as above.

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

• We consider ω_E a metric with Poincaré-type singularities along E and (L, h_L) as above.

Theorem 3 [CP]

We have the following equality for (X, ω_E) and (L, h_L) .

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

• We consider ω_E a metric with Poincaré-type singularities along E and (L, h_L) as above.

Theorem 3 [CP]

We have the following equality for (X, ω_E) and (L, h_L) .

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^*$$

where $X_0 := X \setminus Y$.

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

• We consider ω_E a metric with Poincaré-type singularities along E and (L, h_L) as above.

Theorem 3 [CP]

We have the following equality for (X, ω_E) and (L, h_L) .

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^*$$

where $X_0 := X \setminus Y$.

• This can be seen as part of L^2 -Hodge theory (cf. work by A. Fujiki, S. Zucker, Pardon-Stein and more recently H. Auvray, P. Naumann...).

Hodge decomposition

• To argue as in the smooth case we need a version of the Hodge decomposition in the following setting. Let X be a compact Kähler manifold and let $E = E_1 + \cdots + E_k$ be a snc divisor.

• We consider ω_E a metric with Poincaré-type singularities along E and (L, h_L) as above.

Theorem 3 [CP]

We have the following equality for (X, ω_E) and (L, h_L) .

$$L_{n,1}^2(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^*$$

where $X_0 := X \setminus Y$.

- This can be seen as part of L^2 -Hodge theory (cf. work by A. Fujiki, S. Zucker, Pardon-Stein and more recently H. Auvray, P. Naumann...).
- The proof based on the fact that (X_0, ω_E) complete, together with the following a-priori estimate.

Hodge decomposition, II

• Let $A := [\sqrt{-1}\Theta_{h_L}(L), \Lambda_{\omega_E}]$ be the usual curvature operator. We consider

$$H^{(p)} := \{ v \in H^0(X^\circ, \Omega^p_{X^\circ} \otimes L) \cap L^2; \ \int_{X^\circ} \langle A \star v, \star v \rangle dV_{\omega_E} = 0 \}.$$

Hodge decomposition, II

- Let $A := [\sqrt{-1}\Theta_{h_L}(L), \Lambda_{\omega_E}]$ be the usual curvature operator. We consider $H^{(p)} := \{v \in H^0(X^\circ, \Omega^p_{X^\circ} \otimes L) \cap L^2; \int_{X^\circ} \langle A \star v, \star v \rangle dV_{\omega_E} = 0\}.$
- The following is an important ingredient in establishing the Hodge decomposition.

Theorem 4 (Poincaré inequality)

Let $p \leq n$ be a positive integer. There exists a positive constant C > 0 such that

$$\int_{X_0} |u|_{\omega_E}^2 e^{-\varphi_L} dV \le C \left(\int_{X_0} |\overline{\partial} u|_{\omega_E}^2 e^{-\varphi_L} dV_{\omega_E} + \int_{X_0} \langle A \star u, \star u \rangle dV_{\omega_E} \right)$$

for any *L*-valued form u of type (p, 0) which belongs to the domain of $\bar{\partial}$ and which is orthogonal to the space $H^{(p)}$.

Hodge decomposition, II

- Let $A := [\sqrt{-1}\Theta_{h_L}(L), \Lambda_{\omega_E}]$ be the usual curvature operator. We consider $H^{(p)} := \{ v \in H^0(X^\circ, \Omega^p_{X^\circ} \otimes L) \cap L^2; \int_{X^\circ} \langle A \star v, \star v \rangle dV_{\omega_E} = 0 \}.$
- The following is an important ingredient in establishing the Hodge decomposition.

Theorem 4 (Poincaré inequality)

Let $p \leq n$ be a positive integer. There exists a positive constant C > 0 such that

$$\int_{X_0} |u|_{\omega_E}^2 e^{-\varphi_L} dV \le C \left(\int_{X_0} |\overline{\partial}u|_{\omega_E}^2 e^{-\varphi_L} dV_{\omega_E} + \int_{X_0} \langle A \star u, \star u \rangle dV_{\omega_E} \right)$$

for any L-valued form u of type (p, 0) which belongs to the domain of $\bar{\partial}$ and which is orthogonal to the space $H^{(p)}$.

 \bullet Application: same results hold for metrics with conic singularities along Y

$$\omega_{\mathcal{C}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_{i} \wedge d\overline{z}_{i}}{|z_{i}|^{2\frac{m_{i}-1}{m_{i}}}} + \sum_{i=r+1}^{n} \sqrt{-1}dz_{i} \wedge d\overline{z}_{i}.$$

• We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \dim \left(\ker(\Delta_t'') \right)$ is constant. Then there exists C > 0:

$$\int_{X_t} |u|^2_{\omega_E} e^{-\varphi_L} dV_{\omega_E} \le C \left(\int_{X_t} |\bar{\partial}u|^2_{\omega_E} e^{-\phi} dV_{\omega_E} + \int_{X_t} \langle A \star u, \star u \rangle dV_{\omega_E} \right)$$

for all L^2 forms u orthogonal to the space $H_t^{(p)}$ defined on the fiber X_t .

• We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \dim \left(\ker(\Delta_t'') \right)$ is constant. Then there exists C > 0:

$$\int_{X_t} |u|^2_{\omega_E} e^{-\varphi_L} dV_{\omega_E} \le C \left(\int_{X_t} |\bar{\partial}u|^2_{\omega_E} e^{-\phi} dV_{\omega_E} + \int_{X_t} \langle A \star u, \star u \rangle dV_{\omega_E} \right)$$

for all L^2 forms u orthogonal to the space $H_t^{(p)}$ defined on the fiber X_t .

- Theorem 1 is proved as follows:
 - Consider the representative **u** of *u* given by contraction with the canonical lifting of $\frac{\partial}{\partial t}$

• We actually need the relative version of the Poincaré inequality.

Theorem 5

We assume that $D \ni t \mapsto \dim (\ker(\Delta_t''))$ is constant. Then there exists C > 0:

$$\int_{X_t} |u|^2_{\omega_E} e^{-\varphi_L} dV_{\omega_E} \le C \left(\int_{X_t} |\bar{\partial}u|^2_{\omega_E} e^{-\phi} dV_{\omega_E} + \int_{X_t} \langle A \star u, \star u \rangle dV_{\omega_E} \right)$$

for all L^2 forms u orthogonal to the space $H_t^{(p)}$ defined on the fiber X_t .

- Theorem 1 is proved as follows:
 - ▶ Consider the representative **u** of *u* given by contraction with the canonical lifting of $\frac{\partial}{\partial t}$
 - Since $D'_{\mathcal{F}}u = 0$, it follows that if $D'\mathbf{u} = dt \wedge \mu$ then $\mu|_{\mathcal{X}_t}$ is $\bar{\partial}^*$ -exact.

▶ By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^* \beta_t = \mu|_{\mathcal{X}_t}$. Moreover, can assume that β_t orthogonal to Ker $(\bar{\partial}^*)$.

- ▶ By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^* \beta_t = \mu|_{\mathcal{X}_t}$. Moreover, can assume that β_t orthogonal to Ker $(\bar{\partial}^*)$.
- ▶ The family $(\beta_t)_{t \in \mathbb{D}}$ is varying continuously with respect to t.

- ▶ By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^* \beta_t = \mu |_{\mathcal{X}_t}$. Moreover, can assume that β_t orthogonal to Ker $(\bar{\partial}^*)$.
- ▶ The family $(\beta_t)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_1 := u dt \wedge \star_t \beta_t$: it is the representative we are looking for.

- ▶ By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^* \beta_t = \mu|_{\mathcal{X}_t}$. Moreover, can assume that β_t orthogonal to Ker $(\bar{\partial}^*)$.
- ▶ The family $(\beta_t)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_1 := u dt \wedge \star_t \beta_t$: it is the representative we are looking for.

A remark

The continuity of $(\beta_t)_{t\in\mathbb{D}}$ is reasonably involved, based on Theorem 5 combined with standard arguments. Actually the statement should be that $(\beta_t)_{t\in\mathbb{D}}$ is a smooth family.

- ▶ By Theorem 3 we can solve the fiberwise equation $\bar{\partial}^* \beta_t = \mu|_{\mathcal{X}_t}$. Moreover, can assume that β_t orthogonal to Ker $(\bar{\partial}^*)$.
- ▶ The family $(\beta_t)_{t \in \mathbb{D}}$ is varying continuously with respect to t.
- We set $\mathbf{u}_1 := u dt \wedge \star_t \beta_t$: it is the representative we are looking for.

A remark

The continuity of $(\beta_t)_{t\in\mathbb{D}}$ is reasonably involved, based on Theorem 5 combined with standard arguments. Actually the statement should be that $(\beta_t)_{t\in\mathbb{D}}$ is a smooth family.

• In what follows we discuss the proof of Theorem 2.

A version of Theorem 2

• We consider the following setting:

A version of Theorem 2

- We consider the following setting:
 - ▶ The curvature current of (L, h_L) can be written as

$$\sqrt{-1}\Theta(L,h_L) = \omega_L + [F]$$

A version of Theorem 2

- We consider the following setting:
 - ▶ The curvature current of (L, h_L) can be written as

$$\sqrt{-1}\Theta(L,h_L) = \omega_L + [F]$$

 \blacktriangleright F effective, its support is snc and transverse to fibers

A version of Theorem 2

- We consider the following setting:
 - ▶ The curvature current of (L, h_L) can be written as

$$\sqrt{-1}\Theta(L,h_L) = \omega_L + [F]$$

- \blacktriangleright F effective, its support is snc and transverse to fibers
- ▶ The smooth form $\omega_L \ge 0$ on \mathcal{X} and fiber-wise Kähler.

A version of Theorem 2

- We consider the following setting:
 - ▶ The curvature current of (L, h_L) can be written as

$$\sqrt{-1}\Theta(L,h_L) = \omega_L + [F]$$

- \blacktriangleright F effective, its support is snc and transverse to fibers
- The smooth form $\omega_L \geq 0$ on \mathcal{X} and fiber-wise Kähler.
- We have the following result.

Theorem 2'

Consider $p: \mathcal{X} \to \mathbb{D}$ and $(L, h_L) \to \mathcal{X}$ as above. For every $u \in H^0(\mathbb{D}, \mathcal{F})$ and any $t \in \mathbb{D}$

A version of Theorem 2

- We consider the following setting:
 - ▶ The curvature current of (L, h_L) can be written as

$$\sqrt{-1}\Theta(L,h_L) = \omega_L + [F]$$

- \blacktriangleright F effective, its support is snc and transverse to fibers
- The smooth form $\omega_L \geq 0$ on \mathcal{X} and fiber-wise Kähler.
- We have the following result.

Theorem 2'

Consider $p: \mathcal{X} \to \mathbb{D}$ and $(L, h_L) \to \mathcal{X}$ as above. For every $u \in H^0(\mathbb{D}, \mathcal{F})$ and any $t \in \mathbb{D}$

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F}}}(\mathcal{F})u,u\rangle_t \geq c_n \int_{X_t} c(\omega_L)u \wedge \bar{u}e^{-\varphi_L}.$$

 \bullet We proceed by approximation

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1} \varepsilon \sum_i \partial \bar{\partial} \log \log \frac{1}{|s_i|^2}$$

• We proceed by approximation

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1} \varepsilon \sum_i \partial \bar{\partial} \log \log \frac{1}{|s_i|^2}$$

• A few properties:

• We proceed by approximation

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1}\varepsilon \sum_i \partial\bar{\partial} \log \log \frac{1}{|s_i|^2}$$

 \bullet A few properties:

▶ There exists
$$C > 0$$
 such that $c(\omega_{L,\varepsilon}) \leq C$ and $\lim_{\varepsilon \to 0} c(\omega_{L,\varepsilon}) = c(\omega_L)$.

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1}\varepsilon \sum_i \partial \bar{\partial} \log \log \frac{1}{|s_i|^2}$$

- A few properties:
 - ► There exists C > 0 such that $c(\omega_{L,\varepsilon}) \leq C$ and $\lim_{\varepsilon \to 0} c(\omega_{L,\varepsilon}) = c(\omega_L)$.
 - Let $h_{L,\varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L,\varepsilon}$. Then $\mathcal{I}(h_{L,\varepsilon}) = \mathcal{I}(h_L)$.

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1}\varepsilon \sum_i \partial\bar{\partial} \log \log \frac{1}{|s_i|^2}$$

- A few properties:
 - ► There exists C > 0 such that $c(\omega_{L,\varepsilon}) \leq C$ and $\lim_{\varepsilon \to 0} c(\omega_{L,\varepsilon}) = c(\omega_L)$.
 - Let $h_{L,\varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L,\varepsilon}$. Then $\mathcal{I}(h_{L,\varepsilon}) = \mathcal{I}(h_L)$.
- Let \mathbf{u}_{ε} be the representative of u given by $V_{\varepsilon} \rfloor (dt \wedge U_0)$.

$$\omega_{L,\varepsilon} := \omega_L + \delta_{\varepsilon} \sqrt{-1} dt \wedge d\bar{t} - \sqrt{-1} \varepsilon \sum_i \partial \bar{\partial} \log \log \frac{1}{|s_i|^2}$$

- A few properties:
 - ► There exists C > 0 such that $c(\omega_{L,\varepsilon}) \leq C$ and $\lim_{\varepsilon \to 0} c(\omega_{L,\varepsilon}) = c(\omega_L)$.
 - Let $h_{L,\varepsilon}$ be the metric on L whose curvature in the complement of F is $\omega_{L,\varepsilon}$. Then $\mathcal{I}(h_{L,\varepsilon}) = \mathcal{I}(h_L)$.
- Let \mathbf{u}_{ε} be the representative of u given by $V_{\varepsilon} \rfloor (dt \wedge U_0)$.
- We introduce: $\bar{\partial} \mathbf{u}_{\varepsilon} = dt \wedge \eta_{\varepsilon}$ and $D' \mathbf{u}_{\varepsilon} = dt \wedge \mu_{\varepsilon}$.

End of the proof

• Our current context: $(X, \omega_{L,\varepsilon})$ and $(L, h_{L,\varepsilon})$

End of the proof

- Our current context: $(X, \omega_{L,\varepsilon})$ and $(L, h_{L,\varepsilon})$
 - ▶ The curvature formula looks better:

$$-\frac{\partial^2}{\partial t \partial \bar{t}} (\|u\|_{h_{\mathcal{F},\varepsilon}}^2) = c_n \int_{X_t} c(\omega_\varepsilon) \mathbf{u}_\varepsilon \wedge \bar{\mathbf{u}}_\varepsilon e^{-\varphi_\varepsilon} + \int_{X_t} |\eta_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon} - \int_{X_t} |\mu_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon}$$

End of the proof

- Our current context: $(X, \omega_{L,\varepsilon})$ and $(L, h_{L,\varepsilon})$
 - ▶ The curvature formula looks better:

$$-\frac{\partial^2}{\partial t\partial \bar{t}}(\|u\|_{h_{\mathcal{F},\varepsilon}}^2) = c_n \int_{X_t} c(\omega_\varepsilon) \mathbf{u}_\varepsilon \wedge \bar{\mathbf{u}}_\varepsilon e^{-\varphi_\varepsilon} + \int_{X_t} |\eta_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon} - \int_{X_t} |\mu_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon}$$

▶ The LHS is equal to

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F},\varepsilon}}(\mathcal{F})u,u\rangle - \|P(\mu_{\varepsilon})\|^2$$

End of the proof

- Our current context: $(X, \omega_{L,\varepsilon})$ and $(L, h_{L,\varepsilon})$
 - ▶ The curvature formula looks better:

$$-\frac{\partial^2}{\partial t\partial \bar{t}}(\|u\|^2_{h_{\mathcal{F},\varepsilon}}) = c_n \int_{X_t} c(\omega_\varepsilon) \mathbf{u}_\varepsilon \wedge \bar{\mathbf{u}}_\varepsilon e^{-\varphi_\varepsilon} + \int_{X_t} |\eta_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon} - \int_{X_t} |\mu_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon}$$

▶ The LHS is equal to

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F},\varepsilon}}(\mathcal{F})u,u\rangle - \|P(\mu_{\varepsilon})\|^2$$

• We have $\bar{\partial}\mu_{\varepsilon} = D'\eta_{\varepsilon}$ which combined with L^2 estimates:

$$\int_{X_t} |\mu_{\varepsilon}^{\perp}|_{\omega_{\varepsilon}}^2 e^{-\varphi_{\varepsilon}} dV_{\omega_{\varepsilon}} \leq \int_{X_t} |\eta_{\varepsilon}|_{\omega_{\varepsilon}}^2 e^{-\varphi_{\varepsilon}} dV_{\omega_{\varepsilon}}$$

End of the proof

- Our current context: $(X, \omega_{L,\varepsilon})$ and $(L, h_{L,\varepsilon})$
 - ▶ The curvature formula looks better:

$$-\frac{\partial^2}{\partial t\partial \bar{t}}(\|u\|^2_{h_{\mathcal{F},\varepsilon}}) = c_n \int_{X_t} c(\omega_\varepsilon) \mathbf{u}_\varepsilon \wedge \bar{\mathbf{u}}_\varepsilon e^{-\varphi_\varepsilon} + \int_{X_t} |\eta_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon} - \int_{X_t} |\mu_\varepsilon|^2 e^{-\varphi_\varepsilon} dV_{\omega_\varepsilon}$$

▶ The LHS is equal to

$$\langle \sqrt{-1}\Theta_{h_{\mathcal{F},\varepsilon}}(\mathcal{F})u,u\rangle - \|P(\mu_{\varepsilon})\|^2$$

• We have $\bar{\partial}\mu_{\varepsilon} = D'\eta_{\varepsilon}$ which combined with L^2 estimates:

$$\int_{X_t} |\mu_{\varepsilon}^{\perp}|^2_{\omega_{\varepsilon}} e^{-\varphi_{\varepsilon}} dV_{\omega_{\varepsilon}} \leq \int_{X_t} |\eta_{\varepsilon}|^2_{\omega_{\varepsilon}} e^{-\varphi_{\varepsilon}} dV_{\omega_{\varepsilon}}$$

▶ The decomposition $\mu_{\varepsilon} = P(\mu_{\varepsilon}) + \mu_{\varepsilon}^{\perp}$ is orthogonal and we are done.