Optimal prediction measures

Joaquim Ortega-Cerdà

Universitat de Barcelona

June 3, 2021

Analysis of Monge-Ampère, a tribute to Ahmed Zeriahi

Joint work with Len Bos and Norm Levenberg

Gustav Elfving

The theory of optimal prediction tries to predict the value of a polynomial while only knowning the values of p at certain points in a restricted set K, maybe with an error. One tries to choose the points to evaluate p wisely.

2/15

Gustav Elfving

The theory of optimal prediction tries to predict the value of a polynomial while only knowning the values of p at certain points in a restricted set K, maybe with an error. One tries to choose the points to evaluate p wisely. One of the pioneers of the field was Gustav Elfving (1908-1984).

Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_n[z]$ be a polynomial of degree n in \mathbb{C}^d

$$p = \sum_{k=1}^{N} \theta_k p_k$$

where $\{p_1, p_2, \dots, p_N\}$ is a basis for $\mathbb{C}_n[z]$ and N its dimension.

Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_n[z]$ be a polynomial of degree n in \mathbb{C}^d

$$p = \sum_{k=1}^{N} \theta_k p_k$$

where $\{p_1,p_2,\ldots,p_N\}$ is a basis for $\mathbb{C}_n[z]$ and N its dimension. Let $K\subset\mathbb{C}^d$ and we observe the values of a particular $p\in\mathbb{C}_n[z]$ at a set of $m\geq N$ points $\{z_j:1\leq j\leq m\}\subset K$ with some random errors, i.e., we observe

$$y_j = p(z_j) + \epsilon_j, \quad 1 \le j \le m$$

where we assume that the errors $\epsilon_j \sim N(0, \sigma)$ are independent.

Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_n[z]$ be a polynomial of degree n in \mathbb{C}^d

$$p = \sum_{k=1}^{N} \theta_k p_k$$

where $\{p_1,p_2,\ldots,p_N\}$ is a basis for $\mathbb{C}_n[z]$ and N its dimension. Let $K\subset\mathbb{C}^d$ and we observe the values of a particular $p\in\mathbb{C}_n[z]$ at a set of $m\geq N$ points $\{z_j:1\leq j\leq m\}\subset K$ with some random errors, i.e., we observe

$$y_j = p(z_j) + \epsilon_j, \quad 1 \le j \le m$$

where we assume that the errors $\epsilon_j \sim N(0, \sigma)$ are independent. Let $z \in \mathbb{C}^d \setminus K$. We want to estimate p(z) from the values y_j .

Prediction through least squares

First we want to estimate the parameters θ_k . The least squares estimate is provided by:

$$\widehat{\theta} := (V_n^* V_n)^{-1} V_n^* y.$$

where

is the Vandermonde matrix.

The variance of the prediction

The predicted value for p(z) is given by

$$X = \sum_{k=1}^{N} \widehat{\theta}_k p_k(z)$$

which is a Gaussian random variable with variance:

$$\operatorname{var}(X) = \sigma^2 \mathbf{p}^*(z) (V_n^* V_n)^{-1} \mathbf{p}(z).$$

The variance of the prediction

The predicted value for p(z) is given by

$$X = \sum_{k=1}^{N} \widehat{\theta}_k p_k(z)$$

which is a Gaussian random variable with variance:

$$\operatorname{var}(X) = \sigma^2 \mathbf{p}^*(z) (V_n^* V_n)^{-1} \mathbf{p}(z).$$

If $\mu_X = \frac{1}{m} \sum_{k=1}^m \delta_{x_k}$, then

$$\frac{1}{m}V_n^*V_n=G_n(\mu_X), \text{ where }$$

$$G_n(\mu) := \left[\int_K p_i(w) \overline{p_j(w)} d\mu(w) \right]_{1 \le i, j \le N} \in \mathbb{C}^{N \times N}$$

is the Gram matrix of the polynomials p_i with respect to μ and

$$\operatorname{var}(X) = \frac{1}{m} \sigma^2 \mathbf{p}^*(z) (G_n(\mu_X))^{-1} \mathbf{p}(z)$$

And the Bergman kernel shows up

One checks that for any $\mu \in \mathcal{M}(K)$,

$$\mathbf{p}^*(z)(G_n(\mu))^{-1}\mathbf{p}(z) = K_n^{\mu}(z,z)$$

where, for $\{q_1, \cdots, q_N\} \subset \mathbb{C}_n[z]$, a μ -orthonormal basis for $\mathbb{C}_n[z]$,

$$K_n^{\mu}(w,z) := \sum_{k=1}^{N} \overline{q_k(w)} q_k(z)$$

is the reproducing Bergman kernel for $(\mathbb{C}_n[z], L^2(\mu))$. It satisfies

$$K_n^{\mu}(z,z) = \sup_{p \in \mathbb{C}_n[z]} \frac{|p(z)|^2}{\int_K |p(w)|^2 d\mu} = \sup_{p \in \mathbb{C}_n[z], \ p(z) = 1} \frac{1}{\int_K |p(w)|^2 d\mu}.$$

The polynomial that achieves the sup is called a *prediction polynomial* for z with respect to μ .

Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_n^{\mu}(z,z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.

Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_n^{\mu}(z,z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.

There are other possible notions of optimal design. Most notably:

• G-optimal designs. We want to minimize

$$\min_{\mu \in \mathcal{M}(K)} \max_{z \in K} K_n^{\mu}(z, z)$$

• D-optimal designs. We want to maximize the determinant of the *design* matrix $G_n(\mu)$.

Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_n^{\mu}(z,z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.

There are other possible notions of optimal design. Most notably:

• G-optimal designs. We want to minimize

$$\min_{\mu \in \mathcal{M}(K)} \max_{z \in K} K_n^{\mu}(z, z)$$

• D-optimal designs. We want to maximize the determinant of the *design* matrix $G_n(\mu)$.

Kiefer and Wolfowitz have given a remarkable equivalence between both notions.

The disk

Let $K=\{z\in\mathbb{C}:|z|\leq 1\}$ and |z|>1. In this case one optimal prediction measure $\mu_0(z)$ is the Poisson kernel measure at the point $1/\bar{z}$ for all the degrees n.

8/15

The disk

Let $K=\{z\in\mathbb{C}:|z|\leq 1\}$ and |z|>1. In this case one optimal prediction measure $\mu_0(z)$ is the Poisson kernel measure at the point $1/\bar{z}$ for all the degrees n.

In such a case $K_n^{\mu_0}(z,z)=|z|^{2n}.$ For any other probability measure μ supported on K

$$\begin{split} K_n^{\mu}(z,z) &= \sup_{p(z)=1} \frac{1}{\int_K |p(w)|^2 \, d\mu(w)} \geq \\ \frac{1}{\int_K |\bar{z}^n w^n/|z|^{2n}|^2 \, d\mu(w)} &= |z|^{2n} = K_n^{\mu_0}(z,z) \end{split}$$

8/15

The disk

Let $K=\{z\in\mathbb{C}:|z|\leq 1\}$ and |z|>1. In this case one optimal prediction measure $\mu_0(z)$ is the Poisson kernel measure at the point $1/\bar{z}$ for all the degrees n.

In such a case $K_n^{\mu_0}(z,z)=|z|^{2n}.$ For any other probability measure μ supported on K

$$\begin{split} K_n^{\mu}(z,z) &= \sup_{p(z)=1} \frac{1}{\int_K |p(w)|^2 \, d\mu(w)} \geq \\ \frac{1}{\int_K |\bar{z}^n w^n/|z|^{2n}|^2 \, d\mu(w)} &= |z|^{2n} = K_n^{\mu_0}(z,z) \end{split}$$

In this case, for every n there are discrete measures (provided by Szego quadrature formulas for instance) that have the same n-moments as μ_0 . Thus they are also optimal measures.

The interval

Let K=[-1,1]. Then Hoel and Levine proved show that for *any* $z\in\mathbb{R}\setminus[-1,1]$, a *real* external point, the optimal prediction measure is unique and is a discrete measure supported at the n+1 extremal points $x_k=\cos(k\pi/n), 0\leq k\leq n,$ of $T_n(x)$ the classical Chebyshev polynomial of the first kind. In this case it turns out that

$$K_n^{\mu_0}(z,z) = T_n^2(z).$$

It is well known that T_n is a solution to many extremal problems.

Another extremal problem

For $K \subset \mathbb{C}^d$ compact and $z \in \mathbb{C}^d \setminus K$ an *external* point, we say that $P_n \in \mathbb{C}_n[z]$ has *extremal growth relative to K at z* if

$$P_n = \underset{p \in \mathbb{C}_n[z]}{\arg \max} \frac{|p(z)|}{\|p\|_K} \tag{1}$$

where $||p||_K$ denotes the sup-norm of p on K. Alternatively, we may normalize p to be 1 at the external point z and use

$$P_n = \underset{p \in \mathbb{C}_n[z], \ p(z) = 1}{\arg \max} \frac{1}{\|p\|_K}.$$

Another extremal problem

For $K \subset \mathbb{C}^d$ compact and $z \in \mathbb{C}^d \backslash K$ an *external* point, we say that $P_n \in \mathbb{C}_n[z]$ has *extremal growth relative to K at z* if

$$P_n = \underset{p \in \mathbb{C}_n[z]}{\arg \max} \frac{|p(z)|}{\|p\|_K} \tag{1}$$

where $\|p\|_K$ denotes the sup-norm of p on K. Alternatively, we may normalize p to be 1 at the external point z and use

$$P_n = \underset{p \in \mathbb{C}_n[z], \ p(z) = 1}{\arg \max} \frac{1}{\|p\|_K}.$$

 $T_n(x)$ is the polynomial of extremal growth for any point $z \in \mathbb{R} \setminus [-1,1]$ relative to K = [-1,1]. Erdős has shown that the Chebyshev polynomial is also extreme relative to [-1,1] for real polynomials at points $z \in \mathbb{C}$ with $|z| \geq 1$, i.e.,

$$\max_{p \in \mathbb{R}_n[x], \|p\|_{[-1,1]} \le 1} |p(z)| = |T_n(z)|.$$

The connection

Proposition

The minimal variance is the square of the maximal polynomial growth, i.e.,

$$\min_{\mu \in \mathcal{M}(K)} K_n^{\mu}(z, z) = \max_{p \in \mathbb{C}_n[z], p(z) = 1} \frac{1}{\|p\|_K^2}.$$

The connection

Proposition

The minimal variance is the square of the maximal polynomial growth, i.e.,

$$\min_{\mu \in \mathcal{M}(K)} K_n^{\mu}(z, z) = \max_{p \in \mathbb{C}_n[z], p(z) = 1} \frac{1}{\|p\|_K^2}.$$

$$\begin{split} & \min_{\mu \in \mathcal{M}(K)} \max_{p \in \mathbb{C}_n[z], \, p(z) = 1} \frac{1}{\int_K |p(w)|^2 d\mu} = \\ & = \frac{1}{\max_{\mu \in \mathcal{M}(K)} \min_{p \in \mathbb{C}_n[z], \, p(z) = 1} \int_K |p(w)|^2 d\mu}. \end{split}$$

The Minimax theorem

Now, for $\mu \in \mathcal{M}(K)$ and $p \in \mathbb{C}_n[z]$ such that p(z) = 1, let

$$f(\mu, p) := \int_K |p(w)|^2 d\mu.$$

f is linear in μ and convex in p.

The Minimax theorem

Now, for $\mu \in \mathcal{M}(K)$ and $p \in \mathbb{C}_n[z]$ such that p(z) = 1, let

$$f(\mu,p):=\int_K |p(w)|^2 d\mu.$$

f is linear in μ and convex in p. By the Minimax Theorem

$$\max_{\mu\in\mathcal{M}(K)}\min_{p\in\mathbb{C}_n[z],\,p(z)=1}\int_K|p(w)|^2d\mu=\min_{p\in\mathbb{C}_n[z],\,p(z)=1}\max_{\mu\in\mathcal{M}(K)}\int_K|p(w)|^2d\mu.$$

and

$$\max_{\mu \in \mathcal{M}(K)} \int_{K} |p(w)|^{2} d\mu = ||p||_{K}^{2}.$$

A more precise version

It is also possible to give a more precise relation between the extremal polynomials for the two problems (of minimum variance and extremal growth).

Theorem

A measure $\mu_0 \in \mathcal{M}(K)$ is an optimal prediction measure for $z \notin K$ relative to K if and only if the associated prediction polynomial $P_n^{\mu_0,z}$ satisfies

$$\max_{w \in K} |P_n^{\mu_0, z}(w)|^2 = \int_K |P_n^{\mu_0, z}(w)|^2 d\mu_0,$$

or, equivalently, if and only the associated prediction polynomial is also a polynomial of extremal growth at z relative to K.

Back to the example K = [-1, 1]

The support of an optimal prediction measure in this case is a subset of [-1,1] where $|P_n^{\mu_0,z}(z)|=1$, its maximum value. It has at most 2n points. They must be n-1 interior points and two end points ± 1 . Consequently

$$\mu_0 = \sum_{i=0}^n w_i \delta_{x_i}$$

with weights $w_i > 0$, $\sum_{i=0}^n w_i = 1$.

Back to the example K = [-1, 1]

The support of an optimal prediction measure in this case is a subset of [-1,1] where $|P_n^{\mu_0,z}(z)|=1$, its maximum value. It has at most 2n points. They must be n-1 interior points and two end points ± 1 . Consequently

$$\mu_0 = \sum_{i=0}^n w_i \delta_{x_i}$$

with weights $w_i > 0$, $\sum_{i=0}^{n} w_i = 1$.

Proposition (Hoel-Levine)

Suppose that $-1 = x_0 < x_1 < \cdots < x_n = +1$ are given. Then among all discrete probability measures supported at these points, the measure with

$$w_i := \frac{|\ell_i(z)|}{\sum_{i=0}^n |\ell_i(z)|}, \ 0 \le i \le n$$
 (2)

with $\ell_i(w)$ the Lagrange polynomial, minimizes $K_n^{\mu}(z,z) = (\sum |\ell_i(z)|)^2$.

The case z = ia

In this case it is possible to compute the optimal prediction polynomial and optimal measure. The optimal polynomial in this case depends on the point a and satisfies a three term recurrence relation similar to the Chebyshev polynomials.

$$Q_1(z) = -\frac{az+i}{\sqrt{a^2+1}},$$

$$Q_2(z) = \frac{1}{\sqrt{a^2+1}} \left(-(a+\sqrt{a^2+1})z^2 - iz + \sqrt{a^2+1} \right),$$

$$Q_{n+1}(z) = 2zQ_n(z) - Q_{n-1}(z), \quad n = 2, 3, \cdots.$$

The case z = ia

In this case it is possible to compute the optimal prediction polynomial and optimal measure. The optimal polynomial in this case depends on the point a and satisfies a three term recurrence relation similar to the Chebyshev polynomials.

$$\begin{array}{rcl} Q_1(z) & = & -\frac{az+i}{\sqrt{a^2+1}}, \\ Q_2(z) & = & \frac{1}{\sqrt{a^2+1}} \left(-(a+\sqrt{a^2+1})z^2 - iz + \sqrt{a^2+1} \right), \\ Q_{n+1}(z) & = & 2zQ_n(z) - Q_{n-1}(z), \quad n=2,3,\cdots. \end{array}$$

Theorem (Bos)

The optimal prediction measures $\mu_n \stackrel{*}{\rightharpoonup} \mu$ which is the push forward of the Poisson measure by the Joukowski map $J(z) = \frac{1}{2}(z+1/z)$ at the point $1/J^{-1}(-ia)$.

Moreover μ_n are the Gauss-Lobato measures associated to μ of degree n.