# Optimal prediction measures 

## Joaquim Ortega-Cerdà

Universitat de Barcelona

June 3, 2021

Analysis of Monge-Ampère, a tribute to Ahmed Zeriahi


Joint work with Len Bos and Norm Levenberg

## Gustav Elfving

The theory of optimal prediction tries to predict the value of a polynomial while only knowning the values of $p$ at certain points in a restricted set $K$, maybe with an error. One tries to choose the points to evaluate $p$ wisely.

## Gustav Elfving

The theory of optimal prediction tries to predict the value of a polynomial while only knowning the values of $p$ at certain points in a restricted set $K$, maybe with an error. One tries to choose the points to evaluate $p$ wisely. One of the pioneers of the field was Gustav Elfving (1908-1984).


## Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_{n}[z]$ be a polynomial of degree $n$ in $\mathbb{C}^{d}$

$$
p=\sum_{k=1}^{N} \theta_{k} p_{k}
$$

where $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ is a basis for $\mathbb{C}_{n}[z]$ and $N$ its dimension.

## Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_{n}[z]$ be a polynomial of degree $n$ in $\mathbb{C}^{d}$

$$
p=\sum_{k=1}^{N} \theta_{k} p_{k}
$$

where $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ is a basis for $\mathbb{C}_{n}[z]$ and $N$ its dimension.
Let $K \subset \mathbb{C}^{d}$ and we observe the values of a particular $p \in \mathbb{C}_{n}[z]$ at a set of $m \geq N$ points $\left\{z_{j}: 1 \leq j \leq m\right\} \subset K$ with some random errors, i.e., we observe

$$
y_{j}=p\left(z_{j}\right)+\epsilon_{j}, \quad 1 \leq j \leq m
$$

where we assume that the errors $\epsilon_{j} \sim N(0, \sigma)$ are independent.

## Optimal designs in polynomial prediction

Let $p \in \mathbb{C}_{n}[z]$ be a polynomial of degree $n$ in $\mathbb{C}^{d}$

$$
p=\sum_{k=1}^{N} \theta_{k} p_{k}
$$

where $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ is a basis for $\mathbb{C}_{n}[z]$ and $N$ its dimension.
Let $K \subset \mathbb{C}^{d}$ and we observe the values of a particular $p \in \mathbb{C}_{n}[z]$ at a set of $m \geq N$ points $\left\{z_{j}: 1 \leq j \leq m\right\} \subset K$ with some random errors, i.e., we observe

$$
y_{j}=p\left(z_{j}\right)+\epsilon_{j}, \quad 1 \leq j \leq m
$$

where we assume that the errors $\epsilon_{j} \sim N(0, \sigma)$ are independent. Let $z \in \mathbb{C}^{d} \backslash K$. We want to estimate $p(z)$ from the values $y_{j}$.

## Prediction through least squares

First we want to estimate the parameters $\theta_{k}$. The least squares estimate is provided by:

$$
\widehat{\theta}:=\left(V_{n}^{*} V_{n}\right)^{-1} V_{n}^{*} y
$$

where

$$
V_{n}:=\left[\begin{array}{cccccc}
p_{1}\left(z_{1}\right) & p_{2}\left(z_{1}\right) & \cdot & \cdot & \cdot & p_{N}\left(z_{1}\right) \\
p_{1}\left(z_{2}\right) & p_{2}\left(z_{2}\right) & \cdot & \cdot & \cdot & p_{N}\left(z_{2}\right) \\
\cdot & & & & & \cdot \\
\cdot & & & & \\
p_{1}\left(z_{m}\right) & p_{2}\left(z_{m}\right) & \cdot & \cdot & \cdot & p_{N}\left(z_{m}\right)
\end{array}\right] \in \mathbb{C}^{m \times N}
$$

is the Vandermonde matrix.

## The variance of the prediction

The predicted value for $p(z)$ is given by

$$
X=\sum_{k=1}^{N} \widehat{\theta}_{k} p_{k}(z)
$$

which is a Gaussian random variable with variance:

$$
\operatorname{var}(X)=\sigma^{2} \mathbf{p}^{*}(z)\left(V_{n}^{*} V_{n}\right)^{-1} \mathbf{p}(z)
$$

## The variance of the prediction

The predicted value for $p(z)$ is given by

$$
X=\sum_{k=1}^{N} \widehat{\theta}_{k} p_{k}(z)
$$

which is a Gaussian random variable with variance:

$$
\operatorname{var}(X)=\sigma^{2} \mathbf{p}^{*}(z)\left(V_{n}^{*} V_{n}\right)^{-1} \mathbf{p}(z)
$$

If $\mu_{X}=\frac{1}{m} \sum_{k=1}^{m} \delta_{x_{k}}$, then

$$
\begin{gathered}
\frac{1}{m} V_{n}^{*} V_{n}=G_{n}\left(\mu_{X}\right), \text { where } \\
G_{n}(\mu):=\left[\int_{K} p_{i}(w) \overline{p_{j}(w)} d \mu(w)\right]_{1 \leq i, j \leq N} \in \mathbb{C}^{N \times N}
\end{gathered}
$$

is the Gram matrix of the polynomials $p_{i}$ with respect to $\mu$ and

$$
\operatorname{var}(X)=\frac{1}{m} \sigma^{2} \mathbf{p}^{*}(z)\left(G_{n}\left(\mu_{X}\right)\right)^{-1} \mathbf{p}(z)
$$

## And the Bergman kernel shows up

One checks that for any $\mu \in \mathcal{M}(K)$,

$$
\mathbf{p}^{*}(z)\left(G_{n}(\mu)\right)^{-1} \mathbf{p}(z)=K_{n}^{\mu}(z, z)
$$

where, for $\left\{q_{1}, \cdots, q_{N}\right\} \subset \mathbb{C}_{n}[z]$, a $\mu$-orthonormal basis for $\mathbb{C}_{n}[z]$,

$$
K_{n}^{\mu}(w, z):=\sum_{k=1}^{N} \overline{q_{k}(w)} q_{k}(z)
$$

is the reproducing Bergman kernel for $\left(\mathbb{C}_{n}[z], L^{2}(\mu)\right)$. It satisfies

$$
K_{n}^{\mu}(z, z)=\sup _{p \in \mathbb{C}_{n}[z]} \frac{|p(z)|^{2}}{\int_{K}|p(w)|^{2} d \mu}=\sup _{p \in \mathbb{C}_{n}[z], p(z)=1} \frac{1}{\int_{K}|p(w)|^{2} d \mu}
$$

The polynomial that achieves the sup is called a prediction polynomial for $z$ with respect to $\mu$.

## Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_{n}^{\mu}(z, z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.

## Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_{n}^{\mu}(z, z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.
There are other possible notions of optimal design. Most notably:

- G-optimal designs. We want to minimize

$$
\min _{\mu \in \mathcal{M}(K)} \max _{z \in K} K_{n}^{\mu}(z, z)
$$

- D-optimal designs. We want to maximize the determinant of the design matrix $G_{n}(\mu)$.


## Many optimal designs

Thus we are led to the following problem: Given $z \notin K$, minimize for all probability mesures $\mu \in \mathcal{M}(K)$ the Bergman kernel at the diagonal $K_{n}^{\mu}(z, z)$, find the measure that minimizes it and its corresponding prediction polynomial. This is the optimal design.
There are other possible notions of optimal design. Most notably:

- G-optimal designs. We want to minimize

$$
\min _{\mu \in \mathcal{M}(K)} \max _{z \in K} K_{n}^{\mu}(z, z)
$$

- D-optimal designs. We want to maximize the determinant of the design matrix $G_{n}(\mu)$.
Kiefer and Wolfowitz have given a remarkable equivalence between both notions.


## Some examples

## The disk

Let $K=\{z \in \mathbb{C}:|z| \leq 1\}$ and $|z|>1$. In this case one optimal prediction measure $\mu_{0}(z)$ is the Poisson kernel measure at the point $1 / \bar{z}$ for all the degrees $n$.

## Some examples

## The disk

Let $K=\{z \in \mathbb{C}:|z| \leq 1\}$ and $|z|>1$. In this case one optimal prediction measure $\mu_{0}(z)$ is the Poisson kernel measure at the point $1 / \bar{z}$ for all the degrees $n$.
In such a case $K_{n}^{\mu_{0}}(z, z)=|z|^{2 n}$. For any other probability measure $\mu$ supported on $K$

$$
\begin{array}{r}
K_{n}^{\mu}(z, z)=\sup _{p(z)=1} \frac{1}{\int_{K}|p(w)|^{2} d \mu(w)} \geq \\
\frac{1}{\int_{K}\left|\bar{z}^{n} w^{n} /|z|^{2 n}\right|^{2} d \mu(w)}=|z|^{2 n}=K_{n}^{\mu_{0}}(z, z)
\end{array}
$$

## Some examples

## The disk

Let $K=\{z \in \mathbb{C}:|z| \leq 1\}$ and $|z|>1$. In this case one optimal prediction measure $\mu_{0}(z)$ is the Poisson kernel measure at the point $1 / \bar{z}$ for all the degrees $n$.
In such a case $K_{n}^{\mu_{0}}(z, z)=|z|^{2 n}$. For any other probability measure $\mu$ supported on $K$

$$
\begin{array}{r}
K_{n}^{\mu}(z, z)=\sup _{p(z)=1} \frac{1}{\int_{K}|p(w)|^{2} d \mu(w)} \geq \\
\frac{1}{\int_{K}\left|\bar{z}^{n} w^{n} /|z|^{2 n}\right|^{2} d \mu(w)}=|z|^{2 n}=K_{n}^{\mu_{0}}(z, z)
\end{array}
$$

In this case, for every $n$ there are discrete measures (provided by Szego quadrature formulas for instance) that have the same $n$-moments as $\mu_{0}$. Thus they are also optimal measures.

## Some examples

## The interval

Let $K=[-1,1]$. Then Hoel and Levine proved show that for any $z \in \mathbb{R} \backslash[-1,1]$, a real external point, the optimal prediction measure is unique and is a discrete measure supported at the $n+1$ extremal points $x_{k}=\cos (k \pi / n), 0 \leq k \leq n$, of $T_{n}(x)$ the classical Chebyshev polynomial of the first kind. In this case it turns out that

$$
K_{n}^{\mu_{0}}(z, z)=T_{n}^{2}(z)
$$

It is well known that $T_{n}$ is a solution to many extremal problems.

## Another extremal problem

For $K \subset \mathbb{C}^{d}$ compact and $z \in \mathbb{C}^{d} \backslash K$ an external point, we say that $P_{n} \in \mathbb{C}_{n}[z]$ has extremal growth relative to $K$ at $z$ if

$$
\begin{equation*}
P_{n}=\underset{p \in \mathbb{C}_{n}[z]}{\arg \max } \frac{|p(z)|}{\|p\|_{K}} \tag{1}
\end{equation*}
$$

where $\|p\|_{K}$ denotes the sup-norm of $p$ on $K$. Alternatively, we may normalize $p$ to be 1 at the external point $z$ and use

$$
P_{n}=\underset{p \in \mathbb{C}_{n}[z], p(z)=1}{\arg \max } \frac{1}{\|p\|_{K}}
$$

## Another extremal problem

For $K \subset \mathbb{C}^{d}$ compact and $z \in \mathbb{C}^{d} \backslash K$ an external point, we say that $P_{n} \in \mathbb{C}_{n}[z]$ has extremal growth relative to $K$ at $z$ if

$$
\begin{equation*}
P_{n}=\underset{p \in \mathbb{C}_{n}[z]}{\arg \max } \frac{|p(z)|}{\|p\|_{K}} \tag{1}
\end{equation*}
$$

where $\|p\|_{K}$ denotes the sup-norm of $p$ on $K$. Alternatively, we may normalize $p$ to be 1 at the external point $z$ and use

$$
P_{n}=\underset{p \in \mathbb{C}_{n}[z], p(z)=1}{\arg \max } \frac{1}{\|p\|_{K}}
$$

$T_{n}(x)$ is the polynomial of extremal growth for any point $z \in \mathbb{R} \backslash[-1,1]$ relative to $K=[-1,1]$. Erdős has shown that the Chebyshev polynomial is also extreme relative to $[-1,1]$ for real polynomials at points $z \in \mathbb{C}$ with $|z| \geq 1$, i.e.,

$$
\max _{p \in \mathbb{R}_{n}[x],\|p\|_{[-1,1]} \leq 1}|p(z)|=\left|T_{n}(z)\right| .
$$

## The connection

## Proposition

The minimal variance is the square of the maximal polynomial growth, i.e.,

$$
\min _{\mu \in \mathcal{M}(K)} K_{n}^{\mu}(z, z)=\max _{p \in \mathbb{C}_{n}[z], p(z)=1} \frac{1}{\|p\|_{K}^{2}}
$$

## The connection

## Proposition

The minimal variance is the square of the maximal polynomial growth, i.e.,

$$
\min _{\mu \in \mathcal{M}(K)} K_{n}^{\mu}(z, z)=\max _{p \in \mathbb{C}_{n}[z], p(z)=1} \frac{1}{\|p\|_{K}^{2}}
$$

$$
\begin{aligned}
& \min _{\mu \in \mathcal{M}(K)} \max _{p \in \mathbb{C}_{n}[z], p(z)=1} \frac{1}{\int_{K}|p(w)|^{2} d \mu}= \\
& =\frac{1}{\max _{\mu \in \mathcal{M}(K)} \min _{p \in \mathbb{C}_{n}[z], p(z)=1} \int_{K}|p(w)|^{2} d \mu}
\end{aligned}
$$

## The Minimax theorem

Now, for $\mu \in \mathcal{M}(K)$ and $p \in \mathbb{C}_{n}[z]$ such that $p(z)=1$, let

$$
f(\mu, p):=\int_{K}|p(w)|^{2} d \mu
$$

$f$ is linear in $\mu$ and convex in $p$.

## The Minimax theorem

Now, for $\mu \in \mathcal{M}(K)$ and $p \in \mathbb{C}_{n}[z]$ such that $p(z)=1$, let

$$
f(\mu, p):=\int_{K}|p(w)|^{2} d \mu
$$

$f$ is linear in $\mu$ and convex in $p$.
By the Minimax Theorem
$\max _{\mu \in \mathcal{M}(K)} \min _{p \in \mathbb{C}_{n}[z], p(z)=1} \int_{K}|p(w)|^{2} d \mu=\min _{p \in \mathbb{C}_{n}[z], p(z)=1} \max _{\mu \in \mathcal{M}(K)} \int_{K}|p(w)|^{2} d \mu$.
and

$$
\max _{\mu \in \mathcal{M}(K)} \int_{K}|p(w)|^{2} d \mu=\|p\|_{K}^{2}
$$

## A more precise version

It is also possible to give a more precise relation between the extremal polynomials for the two problems (of minimum variance and extremal growth).

## Theorem

A measure $\mu_{0} \in \mathcal{M}(K)$ is an optimal prediction measure for $z \notin K$ relative to $K$ if and only if the associated prediction polynomial $P_{n}^{\mu_{0}, z}$ satisfies

$$
\max _{w \in K}\left|P_{n}^{\mu_{0}, z}(w)\right|^{2}=\int_{K}\left|P_{n}^{\mu_{0}, z}(w)\right|^{2} d \mu_{0}
$$

or, equivalently, if and only the associated prediction polynomial is also a polynomial of extremal growth at $z$ relative to $K$.

## Back to the example $K=[-1,1]$

The support of an optimal prediction measure in this case is a subset of $[-1,1]$ where $\left|P_{n}^{\mu_{0}, z}(z)\right|=1$, its maximum value. It has at most $2 n$ points. They must be $n-1$ interior points and two end points $\pm 1$. Consequently

$$
\mu_{0}=\sum_{i=0}^{n} w_{i} \delta_{x_{i}}
$$

with weights $w_{i}>0, \sum_{i=0}^{n} w_{i}=1$.

## Back to the example $K=[-1,1]$

The support of an optimal prediction measure in this case is a subset of $[-1,1]$ where $\left|P_{n}^{\mu_{0}, z}(z)\right|=1$, its maximum value. It has at most $2 n$ points. They must be $n-1$ interior points and two end points $\pm 1$. Consequently

$$
\mu_{0}=\sum_{i=0}^{n} w_{i} \delta_{x_{i}}
$$

with weights $w_{i}>0, \sum_{i=0}^{n} w_{i}=1$.

## Proposition (Hoel-Levine)

Suppose that $-1=x_{0}<x_{1}<\cdots<x_{n}=+1$ are given. Then among all discrete probability measures supported at these points, the measure with

$$
\begin{equation*}
w_{i}:=\frac{\left|\ell_{i}(z)\right|}{\sum_{i=0}^{n}\left|\ell_{i}(z)\right|}, 0 \leq i \leq n \tag{2}
\end{equation*}
$$

with $\ell_{i}(w)$ the Lagrange polynomial, minimizes $K_{n}^{\mu}(z, z)=\left(\sum\left|\ell_{i}(z)\right|\right)^{2}$.

## The case $z=i a$

In this case it is possible to compute the optimal prediction polynomial and optimal measure. The optimal polynomial in this case depends on the point $a$ and satisfies a three term recurrence relation similar to the Chebyshev polynomials.

$$
\begin{aligned}
Q_{1}(z) & =-\frac{a z+i}{\sqrt{a^{2}+1}} \\
Q_{2}(z) & =\frac{1}{\sqrt{a^{2}+1}}\left(-\left(a+\sqrt{a^{2}+1}\right) z^{2}-i z+\sqrt{a^{2}+1}\right), \\
Q_{n+1}(z) & =2 z Q_{n}(z)-Q_{n-1}(z), \quad n=2,3, \cdots .
\end{aligned}
$$

## The case $z=i a$

In this case it is possible to compute the optimal prediction polynomial and optimal measure. The optimal polynomial in this case depends on the point $a$ and satisfies a three term recurrence relation similar to the Chebyshev polynomials.

$$
\begin{aligned}
Q_{1}(z) & =-\frac{a z+i}{\sqrt{a^{2}+1}}, \\
Q_{2}(z) & =\frac{1}{\sqrt{a^{2}+1}}\left(-\left(a+\sqrt{a^{2}+1}\right) z^{2}-i z+\sqrt{a^{2}+1}\right), \\
Q_{n+1}(z) & =2 z Q_{n}(z)-Q_{n-1}(z), \quad n=2,3, \cdots .
\end{aligned}
$$

## Theorem (Bos)

The optimal prediction measures $\mu_{n} \stackrel{*}{\rightharpoonup} \mu$ which is the push forward of the Poisson measure by the Joukowski map $J(z)=\frac{1}{2}(z+1 / z)$ at the point $1 / J^{-1}(-i a)$.
Moreover $\mu_{n}$ are the Gauss-Lobato measures associated to $\mu$ of degree $n$.

