Holomorphic sections of line bundles vanishing along subvarieties

Dan Coman, George Marinescu and Viêt-Anh Nguyên

Department of Mathematics, Syracuse University Syracuse, NY 13244-1150, USA

Analysis of Monge-Ampère, a tribute to Ahmed Zeriahi Toulouse, May 31 - June 4, 2021

• • = • • = •

Plan of the talk:

- 1. Preliminaries and notation
- 2. Dimension of spaces of holomorphic sections vanishing along subvarieties
- 3. Envelopes of quasiplurisubharmonic functions with poles along a divisor
- 4. Convergence of Fubini-Study currents
- 5. Zeros of random sequences of holomorphic sections

1. Preliminaries and notation

X compact complex manifold, dim X = n, ω Hermitian form on X

$$d = \partial + \overline{\partial}$$
, $d^c = \frac{1}{2\pi i} (\partial - \overline{\partial})$, $dd^c = \frac{i}{\pi} \partial \overline{\partial}$

If α is a smooth real closed (1,1)-form on X, we let

$$\operatorname{PSH}(X,\alpha) = \{ \varphi : X \to \mathbb{R} \cup \{-\infty\} : \varphi \text{ qpsh}, \ \alpha + dd^c \varphi \ge 0 \}.$$

 $u(arphi,x) =
u(lpha + dd^c arphi,x)$ is the Lelong number of arphi at $x \in X$

 $H^{1,1}_{\partial\overline{\partial}}(X,\mathbb{R}) := \{\{\alpha\}_{\partial\overline{\partial}} : \alpha \text{ smooth real closed } (1,1)\text{-form on } X\}$

Since X is compact, $H^{1,1}_{\partial\overline{\partial}}(X,\mathbb{R})$ is finite dimensional. A class $\{\alpha\}_{\partial\overline{\partial}}$ is *big* if it contains a *Kähler current* (positive closed (1,1) current $T \geq \varepsilon \omega$).

If $\{\alpha\}_{\partial\overline{\partial}}$ is big then, by Demailly's regularization theorem, $\exists T \in \{\alpha\}_{\partial\overline{\partial}}$ Kähler current with *analytic singularities*, i.e. $T = \alpha + dd^c \varphi \ge \epsilon \omega$, where $\epsilon > 0$, $\varphi = c \log \left(\sum_{j=1}^{N} |g_j|^2\right) + \chi$ locally on X, with c > 0, χ a smooth function and g_j holomorphic functions. *Non-ample locus* of $\{\alpha\}_{\partial\overline{\partial}}$:

 $\operatorname{NAmp}(\{\alpha\}_{\partial\overline{\partial}}) = \bigcap \{ E_+(\mathcal{T}) : \ \mathcal{T} \in \{\alpha\}_{\partial\overline{\partial}} \text{ K\"ahler current} \},$

where $E_+(T) = \{x \in X : \nu(T, x) > 0\}.$

Boucksom: $\exists T \in \{\alpha\}_{\partial \overline{\partial}}$ Kähler current with analytic singularities such that $E_+(T) = \operatorname{NAmp}(\{\alpha\}_{\partial \overline{\partial}})$.

Hence $\operatorname{NAmp}(\{\alpha\}_{\partial\overline{\partial}})$ is an analytic subset of X.

Plurisubharmonic (psh) functions and currents on analytic spaces

X irreducible complex space, dim X = n, X_{\rm reg}, X_{\rm sing}

 $\varphi: X \to [-\infty, \infty)$ is *(strictly) psh* if for every $x \in X$ there exist: $\tau: U_x \subset X \to G \subset \mathbb{C}^N$ local embedding, and $\widetilde{\varphi}: G \to [-\infty, \infty)$ (strictly) psh with $\varphi|_{U_x} = \widetilde{\varphi} \circ \tau$.

 $\mathsf{Set} \ \ \Omega^\infty_{p,q}(U) := \tau^*(\Omega^\infty_{p,q}(G)), \ \mathsf{where} \ \tau^*: \Omega^\infty_{p,q}(G) \to \Omega^\infty_{p,q}(U \cap X_{\mathrm{reg}}).$

 $\mathcal{D}_{p,q}(X) \subset \Omega^{\infty}_{p,q}(X)$: space of smooth (p,q)-forms with compact support.

Dual $\mathcal{D}'_{p,q}(X)$: space of currents of bidegree (n-p, n-q) on X.

 $\mathcal{T}(X) \subset \mathcal{D}'_{n-1,n-1}(X)$ positive closed currents with local psh potentials.

Kähler form on X: $\omega \in \mathcal{T}(X)$ with smooth strictly psh local potentials.

Singular Hermitian holomorphic line bundles

X compact, irreducible, normal complex space, dim X = n

$$\pi: L \longrightarrow X$$
 holomorphic line bundle on X:

 $X = \bigcup U_{\alpha}$, U_{α} open, $g_{\alpha\beta} \in \mathcal{O}_X^*(U_{\alpha} \cap U_{\beta})$ are the *transition functions*.

 $H^0(X,L) =$ space of global holomorphic sections of L, dim $H^0(X,L) < \infty$

Singular Hermitian metric h on L: $\{\varphi_{\alpha} \in L^{1}_{loc}(U_{\alpha}, \omega^{n})\}_{\alpha}$ such that

 $\varphi_{\alpha} = \varphi_{\beta} + \log |g_{\alpha\beta}|$ on $U_{\alpha} \cap U_{\beta}$, $|e_{\alpha}|_{h} = e^{-\varphi_{\alpha}}$ (e_{α} local frame on U_{α}).

The curvature current $c_1(L,h) \in \mathcal{D}'_{n-1,n-1}(X)$ of h:

$$c_1(L,h) = dd^c \varphi_lpha$$
 on $U_lpha \cap X_{\mathrm{reg}}.$

If $c_1(L,h) \ge 0$ then φ_α is psh on $U_\alpha \cap X_{\text{reg}}$, hence on U_α (X is normal). So $c_1(L,h) \in \mathcal{T}(X)$.

2. Dimension of spaces of holomorphic sections vanishing along subvarieties

X compact complex manifold, dim X = n, $L \rightarrow X$ holomorphic line bundle

 $L^p := L^{\otimes p}$, $H^0(X, L^p) =$ space of global holomorphic sections of L^p

Siegel's Lemma: $\exists C > 0$ such that dim $H^0(X, L^p) \leq Cp^n$ for all $p \geq 1$.

A line bundle *L* is called *big* if
$$\limsup_{p \to \infty} \frac{1}{p^n} \dim H^0(X, L^p) > 0.$$

If L is big one can show that $\exists c > 0, p_0 \ge 1$, such that

dim
$$H^0(X, L^p) \ge cp^n$$
 for all $p \ge p_0$.

Ji-Shiffman: *L* is big if and only if $\exists h$ singular Hermitian metric on *L* such that $c_1(L, h)$ is a Kähler current.

- (A) X is a compact, irreducible, normal complex space, dim X = n.
- (B) L is a holomorphic line bundle on X.
- (C) $\Sigma = (\Sigma_1, \dots, \Sigma_\ell)$, $\Sigma_j \not\subset X_{sing}$, are distinct irreducible proper analytic subsets of X.
- (D) $\tau = (\tau_1, \ldots, \tau_\ell), \ \tau_j \in (0, +\infty), \ \text{and} \ \tau_j > \tau_k \ \text{if} \ \Sigma_j \subset \Sigma_k.$

 $H^0_0(X, L^p)$ space of sections vanishing to order $\geq au_j p$ along Σ_j , $1 \leq j \leq \ell$

$$t_{j,p} = \begin{cases} \tau_j \rho & \text{if } \tau_j \rho \in \mathbb{N} \\ \lfloor \tau_j \rho \rfloor + 1 & \text{if } \tau_j \rho \notin \mathbb{N} \end{cases}, \quad 1 \le j \le \ell, \ p \ge 1.$$

$$H^0_0(X, L^p) = H^0_0(X, L^p, \Sigma, \tau) := \left\{ S \in H^0(X, L^p) : \operatorname{ord}(S, \Sigma_j) \ge t_{j, p} \right\}$$

We say that **the triplet** (L, Σ, τ) **is big** if $\limsup_{p \to \infty} \frac{1}{p^n} \dim H_0^0(X, L^p) > 0.$

Characterization when X is a complex manifold and dim $\Sigma_i = n - 1$:

Theorem 1

Let: X compact complex manifold, dim X = n, L holomorphic line bundle on X, $\Sigma = (\Sigma_1, ..., \Sigma_\ell)$, $\tau = (\tau_1, ..., \tau_\ell)$, where Σ_j are distinct irreducible complex hypersurfaces in X, $\tau_j \in (0, +\infty)$. The following are equivalent:

(i) (L, Σ, τ) is big;

(ii) There exists a singular Hermitian metric h on L such that

$$c_1(L,h) - \sum_{j=1}^{\ell} \tau_j[\Sigma_j]$$

is a Kähler current on X, where $[\Sigma_j]$ is the current of integration along Σ_j ;

(iii) $\exists c > 0$, $p_0 \ge 1$, such that dim $H_0^0(X, L^p) \ge cp^n$ for all $p \ge p_0$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition 2

Let X, Σ verify (A), (C). Then there exist a compact complex manifold X, dim $\tilde{X} = n$, and a surjective holomorphic map $\pi : \tilde{X} \to X$, given as the composition of finitely many blow-ups with smooth center, such that:

(i) $\exists Y \subset X$ analytic subset such that dim $Y \leq n-2$, $X_{sing} \subset Y$, $\Sigma_j \subset Y$ if dim $\Sigma_j \leq n-2$, $Y \subset X_{sing} \cup \bigcup_{j=1}^{\ell} \Sigma_j$, $E = \pi^{-1}(Y)$ is a divisor in \widetilde{X} that has only normal crossings, and $\pi : \widetilde{X} \setminus E \to X \setminus Y$ is a biholomorphism.

(ii) There exist smooth complex hypersurfaces $\widetilde{\Sigma}_1, \ldots, \widetilde{\Sigma}_\ell$ in \widetilde{X} such that $\pi(\widetilde{\Sigma}_j) = \Sigma_j$. If dim $\Sigma_j = n - 1$ then $\widetilde{\Sigma}_j$ is the final strict transform of Σ_j , and if dim $\Sigma_j \leq n - 2$ then $\widetilde{\Sigma}_j$ is an irreducible component of E.

(iii) If $F \to X$ is a holomorphic line bundle and $S \in H^0(X, F)$ then $ord(S, \Sigma_j) = ord(\pi^*S, \widetilde{\Sigma}_j)$, for all $j = 1, ..., \ell$.

(日) (周) (三) (三)

If \widetilde{X} , π , $\widetilde{\Sigma} := (\widetilde{\Sigma}_1, \ldots, \widetilde{\Sigma}_\ell)$, verify the conclusions of Proposition 2, we say that $(\widetilde{X}, \pi, \widetilde{\Sigma})$ is a **divisorization** of (X, Σ) .

Theorem 3

Let X, L, Σ, τ verify assumptions (A)-(D). The following are equivalent:

(i) (L, Σ, τ) is big;

(ii) $\forall (\widetilde{X}, \pi, \widetilde{\Sigma})$ divisorization of (X, Σ) , $\exists h^*$ singular metric on π^*L such that $c_1(\pi^*L, h^*) - \sum_{j=1}^{\ell} \tau_j[\widetilde{\Sigma}_j]$ is a Kähler current on \widetilde{X} ;

(iii) Assertion (ii) holds for some divisorization $(\widetilde{X}, \pi, \widetilde{\Sigma})$ of (X, Σ) ;

(iv) $\exists c > 0$, $p_0 \ge 1$, such that dim $H_0^0(X, L^p) \ge cp^n$ for all $p \ge p_0$.

- 本間 と えき と えき とうき

Theorem 3 follows directly from Theorem 1 since, by Proposition 2,

$$H^0_0(X,L^p,\Sigma, au)\cong H^0_0(\widetilde{X},\pi^\star L^p,\widetilde{\Sigma}, au)\,,\,\,\,orall\,p\geq 1.$$

Theorem 3 has the following interesting corollary:

Corollary 4

Let X, L, Σ, τ verify assumptions (A)-(D). Assume that dim $\Sigma_j = n - 1$ and let $\Sigma'_j \subset \Sigma_j$ be distinct irreducible proper analytic subsets such that $\Sigma'_j \not\subset X_{sing}, j = 1, \dots, \ell$. For $\delta > 0$ set

$$\Sigma' = (\Sigma_1, \ldots, \Sigma_\ell, \Sigma'_1, \ldots, \Sigma'_\ell), \ \ au' = (au_1, \ldots, au_\ell, au_1 + \delta, \ldots, au_\ell + \delta).$$

If (L, Σ, τ) is big, then (L, Σ', τ') is big, for all $\delta > 0$ sufficiently small.

3. Envelopes of qpsh functions with poles along a divisor

- X compact complex manifold, dim X = n, ω Hermitian form on X, dist = distance on X induced by ω
- $\Sigma_j \subset X$ irreducible complex hypersurfaces, $\tau_j > 0$, where $1 \leq j \leq \ell$. Write $\Sigma = (\Sigma_1, \dots, \Sigma_\ell)$, $\tau = (\tau_1, \dots, \tau_\ell)$,

Let: α be a smooth closed real (1, 1)-form on X, g_j smooth Hermitian metric on $\mathscr{O}_X(\Sigma_j)$, s_{Σ_j} be the canonical section of $\mathscr{O}_X(\Sigma_j)$, $1 \le j \le \ell$,

$$eta_j = c_1(\mathscr{O}_X(\Sigma_j), g_j), \ \ heta = lpha - \sum_{j=1}^\ell au_j eta_j, \ \ \sigma_j := |s_{\Sigma_j}|_{g_j}.$$

Lelong-Poincaré Formula: $[\Sigma_j] = \beta_j + dd^c \log \sigma_j$

 $\mathcal{L}(X, \alpha, \Sigma, \tau) = \{ \psi \in \mathrm{PSH}(X, \alpha) : \nu(\psi, x) \geq \tau_j, \, \forall \, x \in \Sigma_j, \, 1 \leq j \leq \ell \}$

Given $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ we consider the following: $\mathcal{A}(X, \alpha, \Sigma, \tau, \varphi) = \{ \psi \in \mathcal{L}(X, \alpha, \Sigma, \tau) : \psi < \varphi \text{ on } X \}$ $\mathcal{A}'(X, \alpha, \Sigma, \tau, \varphi) =$ $= \left\{ \psi' \in \operatorname{PSH}(X, \theta) : \ \psi' \leq \varphi - \sum_{i=1}^{\ell} \tau_j \log \sigma_j \text{ on } X \setminus \bigcup_{i=1}^{\ell} \Sigma_j \right\}$ $\varphi_{\mathrm{eq}} = \varphi_{\mathrm{eq}, \Sigma, \tau} = \sup\{\psi : \psi \in \mathcal{A}(X, \alpha, \Sigma, \tau, \varphi)\}$ = equilibrium envelope of $(\alpha, \Sigma, \tau, \varphi)$ $\varphi_{\text{reg}} = \varphi_{\text{reg}, \Sigma, \tau} = \sup\{\psi' : \psi' \in \mathcal{A}'(X, \alpha, \Sigma, \tau, \varphi)\}$ = reduced equilibrium envelope of $(\alpha, \Sigma, \tau, \varphi)$

Motivated by the notion of *equilibrium metric* associated to a Hermitian metric on a holomorphic line bundle (Berman, Ross-Witt Nyström).

Coman, Marinescu, Nguyên

Sections vanishing along subvarieties

Proposition 5

Let $X, \Sigma, \tau, \alpha, \theta$ be as above, and let $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ be an upper semicontinuous function. Then the following hold:

(i) $PSH(X, \theta) \ni \psi' \mapsto \psi := \psi' + \sum_{j=1}^{\ell} \tau_j \log \sigma_j \in \mathcal{L}(X, \alpha, \Sigma, \tau)$ is well defined and bijective.

(ii) $\exists C > 0$ such that $\sup_X \psi' \leq \sup_X \varphi + C$, $\forall \psi' \in \mathcal{A}'(X, \alpha, \Sigma, \tau, \varphi)$. (iii) $\mathcal{A}(X, \alpha, \Sigma, \tau, \varphi) \neq \emptyset$ if and only if $\mathcal{A}'(X, \alpha, \Sigma, \tau, \varphi) \neq \emptyset$. In this case, $\varphi_{req} \in \mathcal{A}'(X, \alpha, \Sigma, \tau, \varphi)$, $\varphi_{eq} \in \mathcal{A}(X, \alpha, \Sigma, \tau, \varphi)$, $\varphi_{eq} = \varphi_{req} + \sum_{j=1}^{\ell} \tau_j \log \sigma_j$.

(iv) If φ is bounded and there exists a bounded θ -psh function, then φ_{req} is bounded on X.

(v) If $PSH(X, \theta) \neq \emptyset$ and $\varphi_1, \varphi_2 : X \to \mathbb{R}$ are u.s.c. and bounded, then $\varphi_{1,req} - \sup_X |\varphi_1 - \varphi_2| \leq \varphi_{2,req} \leq \varphi_{1,req} + \sup_X |\varphi_1 - \varphi_2|$ holds on X.

Regularity properties of the equilibrium envelopes

Definition 6

 ϕ : $X \to [-\infty, \infty)$ is Hölder with singularities along a proper analytic subset $A \subset X$ if there exist constants $c, \rho > 0$ and $0 < \nu \le 1$ such that

$$|\phi(z)-\phi(w)|\leq rac{c\,\operatorname{dist}(z,w)^
u}{\min\{\operatorname{dist}(z,A),\operatorname{dist}(w,A)\}^arrho}\ ,\ \ orall\, z,w\in X\setminus A\,.$$

We use the regularization techniques developed by Demailly, Berman-Demailly.

They were employed to study the regularity of envelopes of Hölder continuous or Lipschitz functions by Dinh-Ma-Nguyên, Ross-Witt Nyström, Darvas-Rubinstein.

(日) (周) (三) (三)

Theorem 7

Let (X, ω) be a compact Hermitian manifold of dimension $n, \Sigma_j \subset X$ be irreducible complex hypersurfaces, and let $\tau_j > 0$, where $1 \leq j \leq \ell$. Let α be a smooth closed real (1, 1)-form on X and

$$heta = lpha - \sum_{j=1}^{\ell} au_j eta_j \,, \;\; ext{where} \; eta_j = c_1(\mathscr{O}_X(\Sigma_j), g_j) \,.$$

Assume that the class $\{\theta\}_{\partial \overline{\partial}}$ is big and let $Z_0 := \operatorname{NAmp}(\{\theta\}_{\partial \overline{\partial}})$. Then the following hold:

(i) If $\varphi : X \to \mathbb{R}$ is Hölder continuous then φ_{req} is Hölder with singularities along Z_0 , and φ_{eq} is Hölder with singularities along $\Sigma_1 \cup \ldots \cup \Sigma_\ell \cup Z_0$. (ii) If $\varphi : X \to \mathbb{R}$ is continuous then φ_{req} is continuous on $X \setminus Z_0$, and φ_{eq} is continuous on $X \setminus (\Sigma_1 \cup \ldots \cup \Sigma_\ell \cup Z_0)$.

(日) (周) (三) (三)

4. Convergence of Fubini-Study currents

Assume: X, L, Σ, τ verify (A)-(D), $\exists \omega$ Kähler form on X, h_0 is a fixed smooth Hermitian metric on L, h is a singular metric on L. Write

$$\alpha := c_1(L,h_0), \ h = h_0 e^{-2\varphi}, \ \text{so } c_1(L,h) = \alpha + dd^c \varphi.$$

 $\varphi \in L^1(X, \omega^n)$ is called the *(global) weight of h relative to h*₀. *h* is called continuous, resp. Hölder continuous, if φ is as such on *X*.

 $H^0_{(2)}(X, L^p) = Bergman space of L^2-holomorphic sections of L^p$ relative to the metric $h^p := h^{\otimes p}$ on L^p and volume ω^n on X

$$(S,S')_p := \int_X \langle S,S' \rangle_{h^p} \frac{\omega^n}{n!}, \ \|S\|_p^2 := (S,S)_p$$

We assume in the sequel that the metric h is **continuous** and consider

$$H^0_0(X, L^p) \subset H^0(X, L^p) = H^0_{(2)}(X, L^p).$$

dim $H^0_0(X, L^p) = d_p + 1$, $S^p_0, \dots, S^p_{d_p}$ orthonormal basis of $H^0_0(X, L^p)$

$$egin{aligned} &P_{p}(x) = \sum_{j=0}^{d_{p}} |S_{j}^{p}(x)|^{2}_{h^{p}}, \, x \in X \quad (partial) \; Bergman \; kernel \; ext{of} \; H^{0}_{0}(X,L^{p}) \end{aligned}$$

Let $U \subset X$ open, such that L has a local holomorphic frame e_U on U:

$$|e_U|_h = e^{-\varphi_U}, \ S_j^p = s_j^p e_U^{\otimes p}, \ \text{where } \varphi_U \in L^1_{loc}(U, \omega^n), \ s_j \in \mathscr{O}_X(U).$$

$$\gamma_p \mid_U = \frac{1}{2} \, dd^c \log \left(\sum_{j=0}^{r} |s_j^p|^2 \right) \quad \text{Fubini-Study current of } H^0_0(X, L^p)$$

Have:
$$\log P_p \mid_U = \log \left(\sum_{j=0}^{d_p} |s_j^p|^2 \right) - 2p\varphi_U$$
, so $\log P_p \in L^1(X, \omega^n)$

$$\frac{1}{p}\gamma_p = c_1(L,h) + \frac{1}{2p}\,dd^c\log P_p = \alpha + dd^c\varphi_p,$$

 $\varphi_p = \varphi + \frac{1}{2p} \log P_p = global Fubini-Study potential of <math>\gamma_p$.

Note that φ_p is an α -psh function on X.

Theorem 8

Let X, L, Σ, τ verify assumptions (A)-(D), assume that (L, Σ, τ) is big and there exists a Kähler form ω on X. Let h be a continuous Hermitian metric on L. Then there exists an α -psh function φ_{eq} on X such that, as $p \to \infty$,

$$\int_X |\varphi_p - \varphi_{\rm eq}| \, \omega^n \to 0, \ \frac{1}{p} \gamma_p = \alpha + dd^c \varphi_p \to T_{\rm eq} := \alpha + dd^c \varphi_{\rm eq},$$

weakly on X. If h is Hölder continuous then $\exists C > 0$, $p_0 > 1$, such that

$$\int_X |\varphi_p - \varphi_{\rm eq}| \, \omega^n \leq C \, \frac{\log p}{p} \,, \ \text{ for all } p \geq p_0.$$

Definition 9

The current T_{eq} from Theorem 8 is called *the equilibrium current* associated to (L, h, Σ, τ) .

Coman, Marinescu, Nguyên

Sections vanishing along subvarieties

June 3, 2021 20 / 25

Construction of φ_{eq} : Let $(\widetilde{X}, \pi, \widetilde{\Sigma})$ be a divisorization of (X, Σ) and set

$$\widetilde{L} := \pi^{\star}L, \quad \widetilde{h}_0 := \pi^{\star}h_0, \quad \widetilde{\alpha} := \pi^{\star}\alpha = c_1(\widetilde{L},\widetilde{h}_0),$$

$$\widetilde{\varphi} := \varphi \circ \pi \,, \quad \widetilde{h} := \pi^{\star} h = \widetilde{h}_0 e^{-2\widetilde{\varphi}}$$

Recall that $H_0^0(X, L^p) = H_0^0(X, L^p, \Sigma, \tau, h^p, \omega^n).$

The map

$$S \in H_0^0(X, L^p) \to \pi^* S \in H_0^0(\widetilde{X}, \widetilde{L}^p) = H_0^0(\widetilde{X}, \widetilde{L}^p, \widetilde{\Sigma}, \tau, \widetilde{h}^p, \pi^* \omega^n)$$

is an isometry, so

$$\widetilde{P}_{p} = P_{p} \circ \pi \,, \quad \widetilde{\gamma}_{p} = \pi^{\star} \gamma_{p} \,,$$

are the Bergman kernel function, resp. Fubini-Study current, of $H_0^0(\widetilde{X}, \widetilde{L}^p)$.

Have:
$$\frac{1}{p}\widetilde{\gamma}_p = \widetilde{\alpha} + dd^c\widetilde{\varphi}_p$$
, where $\widetilde{\varphi}_p = \widetilde{\varphi} + \frac{1}{2p}\log\widetilde{P}_p = \varphi_p \circ \pi$.

Recall:

$$\mathcal{L}(\widetilde{X}, \widetilde{\alpha}, \widetilde{\Sigma}, \tau) = \left\{ \psi \in \mathrm{PSH}(\widetilde{X}, \widetilde{\alpha}) : \nu(\psi, x) \ge \tau_j, \, \forall \, x \in \widetilde{\Sigma}_j, \, 1 \le j \le \ell \right\}$$

$$\widetilde{\varphi}_{\mathrm{eq}} = \widetilde{\varphi}_{\mathrm{eq},\widetilde{\Sigma},\tau} = \sup\left\{\psi: \, \psi \in \mathcal{L}(\widetilde{X},\widetilde{\alpha},\widetilde{\Sigma},\tau), \, \psi \leq \widetilde{\varphi} \, \text{ on } \widetilde{X}\right\}$$

 $\mathsf{Have:} \quad \widetilde{\varphi}_{\mathrm{eq}} \in \mathcal{L}(\widetilde{X}, \widetilde{\alpha}, \widetilde{\Sigma}, \tau), \ \, \widetilde{\varphi}_{\mathrm{eq}} \leq \widetilde{\varphi} \ \, \mathsf{on} \ \, X.$

Fix a Kähler form $\widetilde{\omega}$ on \widetilde{X} such that $\widetilde{\omega} \geq \pi^* \omega$.

Theorem 10

In the setting of Theorem 8, we have $\widetilde{\varphi}_p \to \widetilde{\varphi}_{eq}$ in $L^1(\widetilde{X}, \widetilde{\omega}^n)$ as $p \to \infty$. If φ is Hölder continuous on X then there exist C > 0, $p_0 > 1$, such that

$$\int_{\widetilde{X}} |\widetilde{\varphi}_p - \widetilde{\varphi}_{\rm eq}| \, \widetilde{\omega}^n \leq C \, \frac{\log p}{p} \,, \ \text{for all } p \geq p_0.$$

 $(\widetilde{X}, \pi, \widetilde{\Sigma})$ divisorization of (X, Σ) : $\exists Y \supset X_{\text{sing}}$ an analytic subset of X, dim $Y \leq n-2$, $E = \pi^{-1}(Y)$, $\pi : \widetilde{X} \setminus E \to X \setminus Y$ is a biholomorphism.

Define $\varphi_{\mathrm{eq}} := \widetilde{\varphi}_{\mathrm{eq}} \circ \pi^{-1}$ on $X \setminus Y \subset X_{\mathrm{reg}}$. Then, as $p \to \infty$,

$$\int_{X\setminus Y} |\varphi_{p} - \varphi_{\mathrm{eq}}| \, \omega^{n} = \int_{\widetilde{X}\setminus E} |\widetilde{\varphi}_{p} - \widetilde{\varphi}_{\mathrm{eq}}| \, \pi^{\star}\omega^{n} \leq \int_{\widetilde{X}} |\widetilde{\varphi}_{p} - \widetilde{\varphi}_{\mathrm{eq}}| \, \widetilde{\omega}^{n} \to 0.$$

 $lpha + dd^c arphi_{ ext{eq}} = \pi_\star (\widetilde{lpha} + dd^c \widetilde{arphi}_{ ext{eq}}) \geq 0$, so $arphi_{ ext{eq}}$ is lpha-psh on $X \setminus Y$.

Since X is normal and dim $Y \le n-2$, we have that φ_{eq} extends to an α -psh function on X:

If $U \subset X$ is open and ρ is a smooth function on U with $dd^c \rho = \alpha$, then $v := \rho + \varphi_{eq}$ is psh on $U \setminus Y$, hence it extends to a psh function on U.

5. Zeros of random sequences of holomorphic sections

Projectivization of spaces of holomorphic sections

$$\mathbb{X}_{p} := \mathbb{P}H^{0}_{0}(X, L^{p}), \ d_{p} := \dim \mathbb{X}_{p} = \dim H^{0}_{0}(X, L^{p}) - 1, \ \sigma_{p} := \omega_{\mathrm{FS}}^{d_{p}}.$$

~~

$$\mathsf{Product\ probability\ space}\quad (\mathbb{X}_\infty,\sigma_\infty):=\prod_{p=1}^\infty(\mathbb{X}_p,\sigma_p)$$

Using the Dinh-Sibony equidistribution theorem for meromorphic transforms we obtain:

Theorem 11

Let X, L, Σ, τ verify (A)-(D) and h be a continuous Hermitian metric on L. Assume that (L, Σ, τ) is big and there exists a Kähler form ω on X. Then $\frac{1}{p}[s_p = 0] \rightarrow T_{eq}$, as $p \rightarrow \infty$ weakly on X, for σ_{∞} -a.e. $\{s_p\}_{p \ge 1} \in \mathbb{X}_{\infty}$.

Theorem 12

Let X, L, Σ, τ verify (A)-(D), and h be a Hölder continuous Hermitian metric on L. Assume that (L, Σ, τ) is big and that there exists a Kähler form ω on X.

Then there exist constants c > 0, $p_0 > 1$, and subsets $E_p \subset \mathbb{X}_p$, such that for all $p \ge p_0$ we have:

(a)
$$\sigma_p(E_p) \leq cp^{-2}$$
,
(b) if $s_p \in \mathbb{X}_p \setminus E_p$ we have
 $\left| \left\langle \frac{1}{p} [s_p = 0] - T_{eq}, \phi \right\rangle \right| \leq \frac{c \log p}{p} \|\phi\|_{\mathscr{C}^2}, \quad \forall \phi \in \mathscr{C}^2_{n-1,n-1}(X).$

In particular, the estimate from (b) holds for σ_{∞} -a.e. $\{s_p\}_{p\geq 1} \in \mathbb{X}_{\infty}$ if p is large enough.